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The Frederick S. Pardee Center for International Futures

The Frederick S. Pardee Center for International Futures is based at the Josef Korbel School of
International Studies at the University of Denvidie Pardee Ce@r specializes in helping
governments, international organizations, and prisat¢or organizations frame uncertainty and
think strategically about the future. The Pardee Center focuses on exploring past development
trends, understanding the complex rrteationships that drive development outcomes, and
shaping policies that communicate and achieve a clear development strategy.

International Futures (IFs) is a free and openrce quantitative tool for thinking about leng

term futures. The platform hgs users to understand dynamics within and across global systems,
and to think systematically about potential trends, development goals and targets. While no
software can reliably predict the future, IFs forecastahich are calculated using historical

data and a mix of quantitative modelling approadhesffer a broad and transparent way to

think about the tradeoffs in policymaking.

There are three main avenues for analysis in IFs: historical data analysisséotissal and
longitudinal) of more thaB,500 series, Current Path analysis (how dynamic global systems

seem to be developing), and alternative scenario development (expldahieg gtatements about

the future). To do this, IFs integrates relationships across 186 countries and 12 core systems
including: agriculture, demographics, economics, education, energy, environment, finance,
governance, health, infrastructure, international politics, and technologgubhraodelgor

each system are dynamically connected, so IFs can simulate howshange system may

lead to changes across all others. As a result, IFs endogenizes more variables and relationships
from a wider range of key development systems than any other model in the world.

IFs is developed by The Frederick S. Pardee Centent®miational Futures, based at the Josef
Korbel School of International Studies at the University of Denver in Colorado, USA. It was

originally created by Professor Barry B. Hughes.

Learn more about IFs or download the tool for free at pardee.du.edu.
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Figure 1.A representation of the dynamic interactions across systems in the International Futures (IFs) model

The Current Path Scenario

The IFs Current Path is a collection of interacting forecasts that, while dynamic, represent
continuation of current policy choices and environmental conditions. Although the Current Path
generally demonstrates continuity with historical patterns, it provides a structure that generates a
wide range of notlinear forecasts rather than just a sienlinear extrapolation of historical

trends. The Current Path assumes no major paradigm shifts, seismic policy changes or impactful
low-probability events. Given that the Current Path is built from initial conditions of historical
variables and is analyden comparison to other forecasts of particular issue areas, it can be a
valuable starting point to carry out scenario analysis and construct alternative future scenarios.
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Executive Summary

Artificial intelligence, a general term for the scieraca development of machines capable of
completing tasks that would normally require human intelligen@ excitingfield of research
and technologyith deep potential impagtcross the realm of humautivity. A quantitative
forecast ofAl, while chdlenging, isimportantin helpng us better understand how artificial
intelligence is unfolding aniis potential implicationsit a national, regionadndglobal level.

This paper describesglobal Al representatioand forecastapabilityout to the yar 2100 A
saiesof Al indices weraleveloped within the International Futuf#ss) integrated assessment
platform, a quantitative macilevel systemthat produces dynamic forecasts for 186 countries.
IFsmodelsll differentaspect®f global human devepment, including: agriculture, economics,
demographics, energy, infrastructure, environment, water, governance, health, education,
finance, technology, and international polititee models are extensivahterconnected,;
changes in one affect every othe

Given its comprehensiveness, IFsiisquely placed to forecast Al and expla=ewideimpact.
This report focuses on the concepizetionandoperationalizatiorof Al indicesandprovides
initial forecast results. An exploration of the quantitatmpact of Al is left for future research,
but the final section of the report lays out three main areas ripe for explokétiomthe IFs
context economic productivity, labor, and international trade production localization
(includingthatassociatd withgrowth of renewablenergy.

Following the lead of others, this forecasting exercise conceptuatifesad intelligencein

three categories: narrow artificial intelligence, general artificial intelligence and
superintelligencel o d a y 6 \ery iudch limged to the most basiadnarrow Al

technologiesThe evolution of generdl is debated and the timing uncertaBince thebirth of

the Al research fieldn the 1950sprogresshas beelincremental and uneven. Over the last ten
yearshoweve, Al has enjoyed something ofsarrgein terms of both performance and funding.

In the last five years alone the performance of Al technologies has reached a point where they
are both commerciallgpplicableand usefulNeverthelessalmost all progressas been

restricted to narrovAl. Important driversoAl6 s t e ¢ h n o | anglude ipimpropedo gr e s s
hardware capacityelpedby the rise of cloud computing) stronger software, aided liye

growth ofBig Data,iii) an explosion of commercialgriented funding for Al technologies, and

iv) the eve growing reaclof information and communication technology.

The Alrepresentatiom IFsforecasts the developmentsik encompassing (thougleither fully
exhaustivenor mutually excludab)eareas of naaw Al technology computer vision, machine
learning, natural language processing,ltiternet ofThings(loT), robotics, and reasoninghe
forecast of eacls initializedfrom an assessment of performasised capability, funding

levels and researchttention (publicatios). Each indexprogresses based diiferentialy
estimatecannualgrowth rates of each technology. As the index starall approaches 10, we
forecast general Al technology to become available. The level and capacity of general Al is
forecastusinga machine IQndexscore, roughly analogous to human IQ scores. When machine
IQ scores approach superhuman levels, we forecast the emergence of superintelligent Al.
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Underthis approachthe IFs forecastdklisc oncei ved otbmu p Thapodgrdse fA b ot
of importantnarrow technologiesinderstandably advanciagdifferentrates ultimately

generategeneral Al technologgs these technologies impraaieng each narrow indeand

become more integratelth the forecasthe emergencef general Al is constrainad particular

by the rate of improvement and development ahachine reasoningndassociated

technologiesa foundational elemefior any general AlFollowing the emergence of general Al,
positive feedback loops from inaged investment, technologidak n-b w wand popular
interestfollowing will lead to superintelligent Al.

The Current Path forecast in IFs estimdbedgeneral Alcould appeabetween 2040 an2050.
Superintelligent Al is forecast tee developed cl@so the end of the current century

Acknowl edging the vast wuncertai nthetodissr er Al 6s
designed to be maximally flexible so that users of the IFs model can tdjustecastelative

to their own expectations of Als  p r Wealreadydrame the Current Pathh faster and

slower scenariosf development

Of significant utility will be using thiset of indices o e x p Ipaantalimpdact®s human
society Al will improve economic productivity, bugssessnrds of current and future
contributionsvary widely. The extentof impact will beaffected bythe level ofdevelopment
uptake among business and industry, polccymaking Labor isalsoalready being affected,
with jobs in manufacturing and select seevgectors beingutomatedA | 6 s oa Rldorisc t
hotly debated; some predict severe job lossesaaidlinstability while others predict Awill
create swathes of new jobs while freeing hunfesra mundane toito be more productive. Al
may also accetatet h e A | ooofgploductiantcénters, with implications for the
international movement of goods and servié@s.instanceAl will likely revolutionize the
adoption of renewable energy technologatectinginternational tradeft he wostl dés mo
valuable traded commodity: oil and petroleum products.

We appreciate that no quantitative modeling exercise can fully represent the impact of artificial
intelligence nor can it capturés evolutionaccurately. Nevertheless, we believe thagk

represents an important first attempt at a quantitative forecast of global Al development and
opens the door for an essential exploration of the-terg impact.
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Introduction and Overview

The term Artificial Intelligenceor Al, conjures widely different images and expectations for

many different people. Some imaginevarld filled by autonomous campping around without
human inputOthers may imagine a world where intelligent robots work alongside humans
helping to remove much of the drudgery and daily toil from their lives. Some see rapid advances
in healthcare anbealthcare technologies, enabling humans to live healthier, fitter, and longer
lives. Some may see a world where Al becomes the great equalizer, lowering the cost of
production and making a widange of goods available bwoad swathes of the populatigxnd

yet for some, Al conjurefear and foreboding, a world characterized by mass dislocation of labor
and inequality, generating vast social instability. The great fear is that artificial intelligence
comes to surpass human capability with devastatingiakiown consequences.

Despitethese widely different predictiord future Al and human interaction, artificial

intelligence technologies today remain remarkably limited and narrow, capable of generating

only simple outputs like responding to questiamsidentifying specific objects within images,

or identifying anomalies from complex patterns of datee world of autonomousgents with

intelligence equalingr even exceeding that of humans is still largely a fantasy. And getl a y 6 s
narrow Altechnolgiesare advancing rapidly, doubling or even tripling performance over the

past five to ten ydaurttdndustialReti ab u@awabandal | ed t h
Samans, 20J6& recognition itpotentialimpact across aumber of important sectors of human
development.

Al will have farreachingeffectson the ecnomy; enhancing productivity while at the same time
shifting the valueadd away fromabor and towards capitattensive machinery and industries.

The directeffects on labor arbotly debated. Al technologies are already replacing labor in
manufacturing and in some service sectors today, and pessimists suggest this is a harbinger of a
broader trend that will lead to massive hollowing @fubbsbrought on by atomation of tasks

and employment. Optimists counter this by pointing out that technology has historically been a
net job creator, leading to the development of entirely new industries and specializations
previously unavailable. Al will simply free up humaapital to pursue more productive and
meaningful pursuitshey sayln other sectorghe impacwill be similarly broad. Aitonomous

cars could fundamentally restructdransportation infrastructure, reduce traffic accidents and
assocated congestiorAl could helpdrive renewable energy generatiand improve demand

side efficienciesleading to massive growth in renewable powdrcould personalize education
service deliveryand produce tools that allow for lfeng learningA | 6 s p ohlothwidei a | i s
and deem@nd only beginning to be realized.

Gi ven Al 0s andapsocihtechconsemuegdesre is a need for modeling efforts that
allow us to explore Al 6s d e hnepurpoperotthistpaparisto t h e
documentn maleling effortto build a quantitative forecast aftificial intelligencewithin the

International Futures integrated assessment platfooosed at the Frederick S. Pardee Center

for International FuturedVhile no modeling effort can fully capture thevelise impacts of the

Al revolution, the integrated nature of the IFs system leaves it uniquely placed to moddl Al a
explore the forward impact$he Al representation esigned to be uniquely customizable
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within IFs albwing users to calibrate tmepresentatiorbased on their owoonceptions of how
the field isprogressing

We begin with consideration of some of ttievers of artificial intelligence, in particular:
hardware and software devefopnt, the rise of Big Data and cloud computingprmaiton and
communicatiortechnology penetration ratemsd growing investment. We discuss the
construction of thendicesand nitial model results, and thesuggest some potential sectors to
explore the impact of Al within the IFs framework. In particularhaghlight thepotential

impacton economic productivity, labor, and global trade patterns, particularly in the congext of
potential movement towardiscalized production coupledndrenewable energy generation.

Conceptualizing the Field of Artificial I ntelligence

Artificial intelligencerefers generally to the development of macheres autonomous agents
able to perform tasksormally requiring humatevelintelligence.The field of Alwas formally
identifiedin the 1950s, andubsequerdevelopmentvasuneven, punctuated Iprolonged
periods of reduced attention afwthding Over the past five to ten years there has been renewed
interest,particularly from commercial entitiesoupled with rapignvestment in Al and Al

related technologies. By oneiestite,in 2015technology companies spent close to $8.5 billion
on deals and investments in Al, four times as much as @xXhomist, 2016)n 2014 and

2015 alone, eight global technology firiiiscluding major firms like Google and Microspft
made 26 acquisitions of starps producing Al technologies for an estimaédoillion (Chen et
al., 2016) In February 2017 Ford motor companyaunnced iis to invest$1 billion into
technologies to promote research on-deilfing cars(lsaac &Boudette, 2017)These same
technology giantand industry investorare currently engaged in a fiercempetitionfor talent

to develop am\l platform thatwill becme industry standard, allowing that company or set of
companies to control development for years to come.

The field of Al is changing rapidly; today it is somethingaof A Wi | d \&rboth We st o
research and investment. The 2016 Association for thadament of Artificial Intelligence
Conference, one of the largest, accepted submissions to over-8&ciplines ofartificial
intelligence.Between 2012 and 2015, the Wall Street Jouzstaimated that close to 170 startups
opened in Silicon Valley facsedon Al (Waters, 2015)To helpconceptualie such a large and
varied field,we havedrawn onmultiple threads of researdb build a representation in IRbat
proceeds along three major categoriegpologies: narrow, general, and super Al.

Major Al Typologies

Narrow (weak)Al : refersto specializedgsystemslesigned tgerform only one task, such as

speech and image recognition, or machine transladilomost allrecentprogress in the fielts
hpppening within the confines of the narrow Al
intelligent personal assistantS,l exa from Amazon echo, Googl eds
feature, video game Aand automated customer suppbra r r o w  ddrowth and a p i

development is being driven by improving technolagging investment, and a growing

recognition of substantial commercial and sob&hefitsaccruing fromthese technologies.
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General(strong)Al: Seeks ta@reate a single system that exlslgéneral human intelligence
across any cognitive ar@zcluding language, perception, reasoning, creativity, and planning.
Constructing machinesith general Al is extremely complex and scientists have yet to do it.
While the development of General Al masve been one of the original goalstod Al
movement, there is a large amountintertainty around when General Al will emerlylast
researchodayis not focused on General Al atitere is naomprehensiveoadmap toward such
an outcoméStanfordUniversity, 2015)

Superintelligent AtAl superintel | i ge anymtellecethaegreatly éxceeda n i nt
the cognitive performance of humans in virtually all domains of inte(Bsistrom, 20126).

This broad definition does not classify what form superintelligence could take, whether a

network of computersa robot,or something else entirelit.also treats superintelligence as a
monolithic entity, when infactinay be possi bl e to create machin
we currently lack the ability to define and meagitternandez Orallo, 20174). Researchers
havesuggestedhat the advent adeneral Alwill create a positivéeedback loopn both research

and investment, leading superintelligent machines

A Survey of Drivers of Artificial Intelligence

To help understanand identifytrends in Al development a survey of the key conceptual and
technical drivers is importaninportantdriversinclude:hardware andoftware development,
commerciainvestmentBig Data and cloudamputing, andevels of inbrmation and
communication technology (ICPenetrationWe recognize this lighay not becomprehensive
nor exhaustive, but believe that theseas represennportant proximate drivers of Al and
important conceptual building blocks thie Al forecastingcapabilityin IFs.

Hardware Development

Al development relies on two majtechnologicathrusts: hardware and software. Hardware,
computingangg r ocessing power, has traditionally bee
Law. Named for Intel cdounder GordorMoore, it refers to his observation in 1965 that the

number of transistors on a computing microchip had doubled evergigeartheir intervention,

and was forecast to continue along that trajectieigure 2)
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Computing power has increased exponentially

=z
o . . .
E e sincethe law was first proposed in 19@=or
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2 lg - 1970s(Schatskyet al, 2014.
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Figure 2. Number of Transistor Components per Chip
Source: Moore, 1965 By Intelds own estimates,
transistors on a microchip may only continue
doubling over the next five yeafBourzac,
2016)
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Figure 3. Computer Processing Speeds
Source: The Economist, 2016.
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Chip manufacturers are approaching the the@dimits of space anghysicsthat makes

pushing Mooredés Law further both tEocbneds®gica
Law became a seftilfilling prophecybecauseéntel made it so. They pushed investment and

catalyzed innovation to producaore paver and faster processiihe Economist, 2016)n the

face of increasingly high costs acdmplex desigmronsiderationgprocessing speedsea

unlikely to continudo growin the same fashion

While importantMo or e 6 s Law r eq sewmlassessmendf ntomguting poever.
Otherindustrymeasurements capture different aspectawihardware powerOne
measuremengloating Point Operations per Second (FLORS) raw estimate of the number of
calculations a computer perfosper secod, an indicationof computatiomal performance.
Another,Instructiors Per Second (IP&stimatesow rapidlycomputersan respond to specific
instructions and inputgrovidingan indicationof processing speed.

The literature has attempted to estim@eaough termgglobal computing capacitysing IPS

and FLOPS as standard measuremétitsert and Lope£2012)using a variety of data from

1986 and 200 &stimated global computing capacity to be around 2%IR8.They ako

estimate growth rates for general purpose computing hardware to have been around 61 percent
over the same timelinén another longitudinal study, Nordha{Z001)calculated that

computing performance has improved at an average ratepefré&nt annually since 1940ith
variationby decadeA study from Oxford University in 2008 aestated that since 1940, MIPS/$

has grown by a factor of ten roughly every 5.6 years, while FLOPS/$ has grown by a factor of
ten close to ever§ yeargSandberg and Bostrom, 2008)

Building onthisliterature in 2015 contributors to Al Impacts,raopensourceresearch project
based at the Ogfd Futures Instituteestimated global computing capacity to be something in the
region of 2 x 18’7 1.5 x 13 FLOPS.But how does thigpowercomparewith the human brain?
Plausible estimates of human brain computing paaeged from 1, 10?2 and 16° FLOPS
(Sandberg & Bostrom 2008l Impacts, 2015)In his2005b 0 0 k , GRayoKgreweib s
claimed the human brain operatgcthe level ofL0'® FLOPS By these estimateglobal
hardwareprocessing power has surpassed the human. Bxiaeady, some of the most powerful
supercomputers can process data in grealemes and with much more speabdn the human
brain. Yet the human brain remains vastigre efficient, requiring only enough energy to power
a dimlight bulb, while the energyequired for the best supercomputers could power 100
bulbs(Fischetti, 2011)

Softwae Capabilities

Al development is beingatalyzedoy more than just more powerful hardwaraproved

softwarehas facilitated the development of more complex and powadaltithms, an essential
componenbf manynew Al technologiedDeep learning, softwa capable of mimickinthe

br ai ndés n ecarleain and eain viself tetectpatterns through exposure to détof,

2013) Deep Learning technologieléverge from classic approaches to Al, which typicallyeel

on a preprogramned set of rules defining what machiie€ ano and fAcannot do. o
is not constrainetly established ruleand haghe capability tdilearrp, butit requires vast

amounts oflata for learnin@nd often breaks down if there d@requentshifts in datgpatterns

11
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(Hawkins and Dubinsky, 2016According tomarket reseah, revenue from softwangsing

deep learning technologyuld reacltover $10 billionb y t h e mupdronfust averéE00

million in 2015 (Tracticg 2016. Deep Learningechnologyhasenjoyed a renaissanaéongside

thegrowth ofi B i atap poweredby the accessibilitgpnd penetratioof the internet, mobile

devices, and social media, amonfestthings. The vast amount of data being produced in these
areashelps improve the quality of machine learning algorithms, whieghn be @At r ai nedo
expasure to varied datasgfSuszcza et al., 2014)

Deep Learning Software Revenue by Region, World Markets: 2015-2024

$12,000
= North America
$10,000 = Western Europe
= Eastern Europe
2 $8,000 = Asia Pacific
[72]
s « Latin America
= 96,000 Middle East
&
Africa
$4,000
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Figure 4. Forecasted Revenue for Software Built Using Deep Learning
Source: Tractica, 2016

While deep learning places a premium on data mining and pattern recognition, anotigergeme
approach, Reinforcement Learnimgoves toward decisiemaking and away from pattern
recognition(Knight, 2017)Und er t hi s approach, Al machines il
attempt to perform a specific task hundreds or even thousands of times. The majority of attempts
result in failure, yet with each success, the machine slowly learns to favor behavior

accompanyig eachsuccessful attempt. Reinforcement Learning builds on behavioral principles
outlined by psychologist Edward Thorndi ke 1in
placed rats in enclosed boxes from which the only escape was by steppingantlzaieopened

the box. Initially, the rats would only step on the lever by chance, but after repeated trials they

began to associate the lewath an escape from the boand the time spent in the box fell

sharply(Knight, 2017) In March 2016 AlphaGo, a Google program trained using reinforcement

l earning, defeated Lee Sedol, ® wase espetiallyt he wor |
surprising because Go is an extremely complex game that cannot be reproduced by machines

with conventional or simple ruldsased programmindn past @pertshaveestimated that a

machine woul dndét be abl e odherdaetadé @& sot(Knight, B0t7nan Go

12
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Cloud Computing

AlongsideBig Data, the internet and cloud comput{ingernetbased computing servicesme
important catalystef Al development. They have helped maket\aasounts of data available to
any device canected to the internet atitky allow for crowdsourcing and collaboratithrat can
improve Al systemgSchatsky et al., 2014¢loud computing is fundamentally restructuring the
licensing and delivery of softwareperating platbrms, and IT infrastructure. It atalyzing a
movement towards providing softwarspurces as edemand service®iamandi et al., 2011)

Tablel. Cloud Computing Services

Computing Service Description Example Products
Infrastructure as a Service (laaS) Provides computing capabilities, Amazon EC2 and S3 Services
storage and network infrastructure Xdrive

Platform as a Servce Provide platforms that enable Microsoft Windows Azure
(PaaS) application design, development, Salesforce.com platform
and delivery to customers.
Software as a Service Software applications are deliverer Google Docs
(Saas) directly to customers and end usel Microsoft Office 365
Zoho

Source: Diamandi et al, 2011.

Cloud computing is stilargely in its nascent stages, but teehnology ievolving in parallel

with manynarrow AlapplicationsMi ¢ r o s o f thawoffersraamnycoghitiee services

through the cloudncluding computer vision and language comprehension. Amazon Web
Services has added data minargl predictive analytics tools as part of its cloud computing
toolkit (Amazon, 2017)In 2015, telecommunications company Cisco released a white paper on
the size and trajectory of global cloud computing capacity between 2015 andA26@ftling to

their estimates, global cloud IP traffic will grow at a compound annualtgnate (CAGR) of

30 percent between 2015 and 2@2@sco, 2015) They foreast annual gladd cloud traffic to

reach 14.1 zetabytesBY (1.2 ZB per month), by 2020, up from 3.9 ZB in 2315.

Market spending on cloud computing services is projected to nrahthan $200 billioby

2020, upfrom an estimated $122 billion in 20DC, 2016) Approximately 90 percent of

global enterprisewill use some fye of cloudbased technologlyy 2020(EIU, 2016) Despite

the forecastedrowth, a 2016 study from the Economist Intelligebcdt found that cloud
computing, measured bgdustry adoption rates, is reatinly just beginning. The study

surveyed leadersdm five major industries (banking, retail, manufacturing, healthcare,
education), and found that an average of only 7 percent of respondents felt that cloud computing
pl ayed a f plEconenassntelligenae biit,201%. In addition to variedates of
adoption, concerns over privacy, security, and flexibility remain. Companies deciding to adopt
one cloud platform may find it costly or difficult to transfer their information to another provider
(Economist, 2015)mproved regulation that allows benefits companies and consumers to move

11 zetabyte is equab 1G** bytes. A byte is a unit of digital information, traditionally consisting of 8 bits. 8 bits
represents the number of bits required to encode and save a single character of text in a computer.
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data between different providers may enhance adoption rates. The growth of the cloud, both in
terms of data managemt and market size is undeniable, inyportantchallengesemain

The Shifting InvestmenLandscape

Al advancement has traditionally been the product of universities and corporate research and
development labs (e.g. IBM). Over the last few ye@iigzon Valley has movethajor

investments ito Al. There is a growing appreciation and recognition of the social benefits and
commercial value of narrow Al technologies, prompting interest from Silicon Valley and private
startups. Major technology companiegiuding Facebook, Google, and Microsoft have hired
some of the best minds in Al and invested heg\lpergotti, 2014; Regalado, 2014)ne

reason technology companies have been able to attract the top talent away from research
universities is in addition to comfortable compensation packages, these companies are sitting on
vast amounts of user generated data increasingly essential to Al development. This data is not
publicly available nor can many research centers and universities compete with its size and
breadth.

Private investment in Al has grown commensurate withegbeltsand attentionOne market
research firm estimated private funding for Al (excluding robotics) to have grown from $589
million in 2012 to over $5 billion in 201@°B Insights, 2017)There may be as many as 2,600
different companies operating in the Al sector as of 2016, with over 170 having taken off in
Silicon Valley since 2014Byrnes, 2015 The oboics marketalone could be worth close to
$135 billion by 209 (Waters & Bradshaw, 2016)

Information and Communication Technology Access

Information and communication technoloagcess is ather important indicator of AICT
penetration rates, particularly mobile broadband, serve as an important baseline to justify
investment into Al and give some indication of the technological depth of a sddaaty Al
applications over theearterm will rely on smart phones as a service delivery mechariibm
number of smart phones in the world is expected to grow, reaching over 6 billion by 2020 with
much of the growth coming from the developing woildday there are an estimatg@ billion
(Ericsson, 2016The2016annual report by the International Telecommunications Union (ITU)
provides acurrentsnapshot oflobal ICT connectivity

1 Globally, 95% of the populatiofives in an area covered bycallular network; 84% of
the population lives in an area with a molliteadband networ{@G or above)but only
67% of the global rural population has access to mobile broadband regularly.

1 An estimated 3.9 billion people are not using the internet rdgutaughly 53%of the
total. Internet penetration rates in developed countries are up at around 81%, while in the
developing world they average approximately 41%, but only 15% in the least developed
countries

1 An estimated 1 billion households have intémecess: 230 million in China, 60 million
in India, and 20 million across the 48 least developed countries.

14
Pardee Center: Modeling Al



As we can see from the figures above, much of the developed world is covered by internet access

and mobile broadband, but a general lack of aco&sstrains th@oorest parts of the world.

Together, th@receding listomprisa important proximate drivers of Al development. In
addition, the spread of Al technologies for commercial and personalilise contingent on
policymaking and industry agtion. Transparent policymaking is necessary to defirgules
of Al and its use, but also to justidoption and investment. How rapidly the business industry
can integrate emerging Al technologies into their work cyclefwitherhinder or hamper
adoption. Withthese trends and important drivers in miwe shift to thinkng about

Ai ntelligenceo0 an dradsesgenevaky intalliggnbhrmachnesal uat e

Measuring and Evaluating Artificial Intelligence

There is minimal doubt that Artificidhtelligencei s a 0 s u c;nenstextnaldgiés aridi e | d

applications are emerging regulatiyernandezOrallo, 2017117). Almost all recent progress

has been restricted to narrow Al sectors; the development of general Al machines remains a
distant goatather than an imminent reality. Scientists and developers in the field remain
confident that general Al will be developed, though there is significant uncertainty as to the
timeline.

EvaluatingAl requires some basic consensus around standard benclohprikgress and an
understanding of what qualifies as genartdlligence at least from a definitional perspective.
As we will see, there exists a great many
and evaluation techniguesedto asses machine intelligence, and some dispute around how we
can (or should) accurately measure general intelligence.

Early researchers of Al werfocused on developing generally applicable machihasisthose
capable of solving variety of problems otherge requiringi i n t e 10 (Néwgleehat, 4959)

Some researchers tried to design programs that would be capable of solving questions commonly

found on human IQ tests, such as the ANALOGY progrdnich soudpt to answer geometric
analogy questions frequently found on intelligence t@stans, 1964)Ultimately however, the

creation of generally intelligent machines was far more difficult than many predicted, leading to

a stagnation in Al research in the 1960s and the 19Hespace of researetso sbwed as a
result of what has be odheieakhatassoon @Rl sticbessfuliy A |
solves a problem, thechnologyis reduced to its basalements by critics and thus ie longer
considered intelligeniMcCorduck, 2004)For instance, when Deep Blue beat chess champion
Gary Kasparov in 1997, critics claimed that the machine resorted to brute force wautibs,

were simply a function of computing power rather than a true demonstration of intelligence
(McCorduck, 2004, p. 33Yheresulo f t he fAAl esthrfdardsdr tuemashiné h a t
intelligencekeep retreatingThese difficulties helped in part to shift the field toward the
development of narrow technologies capable of achieving measunabjeactical results
(HernandezOrallo, 2017120).
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Evaluating Narrow Al

The growth of narrow Alteachol ogy means that most Al - s now
orient ed (eermdntlez@rdllo, 2007,13b)that is, according to its relative performance

along taskspecific, measurable outcomd@®day allof the benchmarks alonwarrow the Al

categories discussed below measure performance according the complespedfia task:

1 the ability to translate textdm one language to the other, or
1 identify acat from a series of photasy,
1 accuratelyrespond to specific questions from a human user

Progress along these many different evaluations shows tlimbatonmng more useful, but

doesndt neces simbecomisgungrgiataligeniebsaring aAd evaluating

artificial intelligence requires some classification and undedstg of major technologidhat

are shaping the fiel@he Al field is diverse rad rapidly expandig and resists simple

classification Pullingtogethervarious threads from a wigdangeof research, we have identified

six fAicategorieso of Al technology generating
learning, natural languagepp c essi ng, r obot i ¢coandreashnegedidiont er net
making These six include both foundational Al technologies as well as impaoetmiologies

emanating from themWhile items onthis listareneither exhaustive nor exclusive (See Byx

theyprovide a framework to begin building thepresentation of Aih IFs.

Table2. Technologies Comprising the Narrow Répresentation in IFs

Type Definition Applications

Computer Vision Ability of computers to identify gjects, Medical imaging, facial recognition, retaihd
scenes, activities in images. sales

Machine Learning Ability of computers to improve Any activity that generatesubstantiatlata.
performance through exposure to data Examples includefrauddetection inventory
without pre-programmed instructions management, healthcare, oil & gas

Natural Language Ability of computers to manipulatevrite Analyzing customer feedbaciutomating writing

Processing and process language, as well as interact of repetitive informationidentifyingspam,
with humans through language. information extractiorand summarization.

Robotics The branch of technology specializing in  Unmanned aerial vehicles, cobots, consumer
design and construction of robots. products and toyselect servicesnanufacturing

Internet of Networking of physical objects through th: Two main applications: anomaly detection and

Things/Optimization use of embedded sensors, actuators, and optimization. Specific applications imergy
other devices that can collect or transmit supply and demandnhsurancendustry and
information about the objects. Requires  optimization of premiumshealthcare, public
collecting data, networkg that data, and  sector managemeén
then acting on the information.

Reasoring, This represents an area of Al research Limited modern applicatiomand development
Planning, & concerned with developing ability of Some basic reasoning technology has been us
Decisionmaking machines to reason, plan, and develop  to assist irproving mathematical theorems.

decisioamaking capacityWe represent it

as a gener al Aspil |l

machine reasonin@n essential ement of

general Al.
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Box 1.

Thereare manysub-disciplinesand areas of study within the Al field, many more thandde effectively
captured irmnymodeling effort. The 2016 Association for Artificial Intelligence anramaiference alone
accepted submissions to over 30 different Al subfields. The six main categories of technology we have
representeavithin narrow Al cover both foundationaRfl technologiegcomputer vision, machine learning,
natural language processing, reasoning), as well as important technologies that are emanating from the f
(robotics, internet of things). These araas currently receiving sigiitant attention, deep financial investment
and/orare necessary fadvancinghe spectrum towards general Al.

We recognize these categories are neither exclusive nor exhaustive. To outline the diversity of research
development currently happeniagthin the field, Table3 below depicts other important areas of Al
technological developmerincluded in this list are the madtisciplineswithin Al Journal one of the leading

publications in the field (Hernand&rallo, 2017:148)

Table3 Major Areas of Al Research

Al Subfield Definition

Crowdsourcing and Algorithms that allow autonomous systems to work collaboratively with

Human Computation other systems and humans

Algorithmic Game Researcliocusedaroundthe economicand social computing dimensions ¢

Theory Al.

Neuromorphic Mimic biological neural networks to improve hardware efficiency and

Computing robustness of computing systems

Automated (Deductive Area of computer science dedicated to understanding @iff@spects of

Reasoning) reasoning to produce computers that are capable of reasoning complet

Constraint Processing Refers to the process of finding solutions amidst a set of constraints the
impose conditions that certain variables must satisfy.

Knowledge Representing real world information in forms that a computer system c

Representation use to solve complex tasks

Multi -agent Systems Computer system composed of multiple, interacting, intelligent agents

within one environment.
Planning and Theoriesof Devel opi ng machines capable of T
Action context of unpredictable and dynamic environments, often irtiraal
Commonsense Reasoning Simulating human ability to make presumptions, inferences, and
understanding about ordiry situations that they encounter on a day to d

basis
Reasoning Under Concerned with the development of systems capable of reasoning undi
Uncertainty uncertainty;Estimate uncertain representations of the worldays

machi nes can @Al earn from. o

Benchmarking Progress in Narrow Al

In this section, we outline recent progress along thegoaies of narrow technology outlined

above Given the lack of standardized data on Al technology and development across time, these
benchmarksre pulled from aariety of sources, including (but not limited to), media reports,
market research estimates, government analyses, journal articles, and othedirtteqealyses

of the field. Tabled provides a summary of progress along the identified categoriesrofwnat
technology and an initial Al index score (frorl0) for eachestimatedy the authorsA

justification for the initialscore is elaborated in text below the table.
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Table4. Benchmarking Progress in Narrow Al Technologies

Technology

Machine
Learning

Computer
Vision

Natural
Language
Processing

Robotics

Performance Benchmarks 2015

Index
Score
1997 IBM Deep BluedefeatsGary Kasparoya Grandmaster, in a game o 3
Chess.
2011 IBM Watson defeats Jeopardy! champion. In the lead up to the
contest, betweebecember2007 and Jamary2010, the precision of
Wat sonds r espons éecismomeasuresithe percentag
of questions the system gets right relative to those it chooses to almswe
December of 2007, Watson answered 100 percent of Jeopardy! style
questions with onl\80 percent accuracy. By May of 2008, accuracy of
response improved to 46 percent, and by August of 2008 it was close t
percent. A year later in October of 2009 accuracy (with 100 percent of
questions answered) hovered around 67 pertwice the levein 2007.
20082012 NIST Machine Translation Scores. Chinés&nglish
translationaccuracyas compared with a human translationproved 28
34%betweer20082012. Arabicto English accuracgcoresmproved from
41% to 45%Less widely spoken languagesored less welDari to
English 13% (2012), Farsb English 19% (2012), Korean English 13.6%
(2012).
2013 First Al software passdkle Captchaest.Captcha is a commonly
used authentication test designed to distinguish humans and computer
Captcha is considered broken if a computer is able toesitlene percent of
the time; this Al softwarsolved it 90 percent of the time.

20102015 StanfordAl ImageNet corpetition. Imageclassification has 3
improved by a factor of 4 over ®grs. Error rates felfom 28.2% to 6.7%
over that time period.

In the same competitionpgect localization error ratdsll from 45% in
2011t0 11% in 2015

2012 Google releases the ACat Paj
learning from unlabeled dato correctly identify photos containing a cat.
2014 Facebooixk®Bacdé&o team publishes
recognition software recognizésces with 97% accuracy

2015 Microsoft image recognition algorithms published an error rate of
4.94% surpassing the human error threshold of 5.1% and down from e
ratesof 280 % i n the early 200006s.

2012 2014 Siri6 ability to answer questiorerrectly improved fronan 2
estimated75% to 82%. Over the same time periGogle Nowresponse
accuracy improveffom 61%t084% Si ri 6s abil ity
when heard correctly improved from 88% to 96%. Google Niomilarly
improvedfrom 81% to 93%.

2015 Baidureleased it®eepSpeech program that can recognizegish
and Mandarin better than humans anbi@ves a character error rate of
5.81%.Represents a reductionenror rates by 43% relative to tfiest
generation of the software.

2016 Microsoft switchboard word transcription error rates have droppe:
from betweer?0-30% around 2000, to a reporte®% in 2016.

1942 Isaac Asimopublisheghe Three Laws of Robotics 1
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1 1954 Patent for AUnimate, 0 the fi

on aGeneralMotors assembligeginning in 1961.

1969 Robot vision for mobile robgjuidancdirst demonstrated at Stanfor

1 197Q Hitachi develops the first robot capable of assembling obfents
assembly plan drawgs.

9 1980Q First useof machine vision in robotics demonstrated at the Univer:
of Rhodelsland in the U.S.

1 199Q Manufacturers begin tmplementnetwork capabities among
robots.

1 2002 Reis Robotics patents technology permitting among thediirstt
interactiors between humanasnd robotsRobotics industry crosses $1
billion.

1 2003 MarsRover first deployed heading to the planet Mdviars Rover
missions continu¢hrough the present day.

I 2004 First DARPA Grand Challeng&oal: design an autonomous car
capable of completing 150 mile route through the Mojave Desert in the
No cars copleted the route; an entry from Carnegie Mellon went the
farthest, completing roughly 7.3 miles.

1 2005 Second DARPA Grand challend2esign a driverless car capable o
completing a 132 mile offoad course in California. Of the 23 finalists, 5
vehicles sacessfully completed the course, the fastest in just under sev
hours.

1 2007 Third DARPA Grand Challeng®esign a selfiriving car capable of
compleing an urban60-mile course in less thasix hours. Required
vehicles that could obey traffic laws an@ke decisions in real time. Six
teams successfully completed the course, the fastest in just over four h

1 2015 Carmaker Tesla releases its first gatien Autopilottechnology
part of its suite of sel@iriving technolog. Autopilot allows Tesla to
automatically steer within lanes, change lanes, manage speed, and pal
park on command.

I 2015 TheUniversity of Michigan opens MCity, a testing center for
autonomous vehicles. Represents the first major collaboration betweer
private industry, governmeand academia on the development of
autonomous vehicles.

I 2015 BCG estimateglobal roboticananufacturing installations to grow
10% through 2025gachingan estimate® million globally. Yet even by
2025 robotics may only account for 25% of all manufaittg tasks

=

globally.
Internet of 9 1990:There are mestimated 100,000 internet hosts across the worldwic 2
Things web.

2000: More than200 million devicezonnected tohe loT

1 2012 A botnet known aé C a oo gerformed an internet census and
counted pproximately 1.3 billion devices connected to the worldwide.w

I 2014 The number of devices communicating with one another surpass
the number of people communicating with one another.

I 2015 overl.4 billion smart phonewereshipped and by 2020 we will
have6.1 billionsmartphone users

9 2020 There could beraywhere from20-50 billion devices connected te

loT

=
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Reasoning, 1 Spillover category designed to capture progress towaaioning, 1

Plaqnjng, anq planning, and decisionmakinkey elementof general intelligence.

Decisionmaking f  There are very minimal currenpglicationsin this technology. Automated
Reasoning, for instance, has been usdte formal verification of
mathematical proofs and tfiermalization of mathematics.

Thinking AboutMeasuringGeneral Al

There are many, varyingpnceptuameasurements f@eneral artificial intelligence (AGI). One
exampl e i s tunderwhichaiachmeshouldebs dble ®nteranordinary and
unfamiliarhuman homefind the kitchen, anthakea cup of coffedMoon, 2007) Along these

lines,others have proposed tregienerally intelligent machine should be able to entake

classes, and obtain a degli&e many other college studer{tSoertzel, 2012)Nils Nilsson, a
Professor of Al at Stanford, has taken the de
t est, 0 atwlymtellgénymachine should be able to compddteostall of theordinary

taskshumans regularlgomplete at their place of employméntuehlhauser, 2013)

These definitions of AGI have similar underlying themes: they require that machines be able to
respond to differertasks under vging conditions. These differing tests help us arrive at a
working definition of generaburpose Al systems, proposed by HernarQeallo, (2017:146):

AGI must do a range of tasks it has never seen and not prepared for beforehand.

Having defined AGI, wenust now consider measurement techniqliese. Turing Test, first

proposed b¥nglish Mathematician Alan Turing 1950has evolved into a simptest of

intelligence.The Turing Test measures the ability of machines to exhibit intelligent behavior
indistinguishable from that of humani$ a machine can fool a human into thinking it is human,

then that machine has passed the Turing Beshe haveidentdid it as fAa si mpl e
i nt el I(Fremeh,@0A TH), oragoal of Al (Ginsberg, 1993). An example of the

enduring appeal of theuring Test,The Loebner Rze for Atrtificial Intelligence, offers $100,000

to the chatterbot deemed to be most huiik@naccording to a panel of judgddhe prize has

been offered annually since 1991.
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Box 2.

Some researchers of Al have proposed a suite of tests for whichlyaeageneral intelligence. Adams et al
(2012)i dent i flieewdelA hd grhpet ency areaso that machines
scenarios, including: videgame learning, preschooblming, reading comprehension story comprehension,
the Wozniak test (walk into a home and make a cup of coffee) (synthesized from HerQaaibe22017:148).

Core competency areas as identified by Adams et al (2012) and reproduced in HeGratid§2017) are seen
in the table below:

Table5. Core Competencies of General Al

Perception Memory

Attention Social interaction
Planning Motivation
Actuation Reasoning
Communication Learning

Emotion Modelling self/other
Building/creation Use of quantities

While such a set of complex assessments may never be possible across all of the identified competencie
scenarios, comprehensive analysis could include some combination of these different evaluation strategi

More recent research hasgued against the Turing Test asufficientmeasure for general
intelligence. Hernande@rallo (2017:129130), summarizes its shortcomings succinctly. He
points out that many neimtelligent machines can be trained and designéddgudges,

without necessarily exhibiting true intelligendde results of the Turing can differ dramatically
based on indications, protocols, personalities, and intelligence of the people involved, both the
judges and participantBinally, theTuring Teg asks machines to imitate humans, which raises
guestions about how representative the imitation is of the entire human race.

Instead of focusingontaskpeci fi ¢ evaluations, AGI evaluat:i
oriented eval uationwonld b& baSed onha prafite ofdbehavional features and
personality traits of the machine, rather than its ability to perform a discrete task (Hernandez

Orallo, 2016:146). This type of evaluation builds on performance along narrow task areas and
towards a maximalist view of general intelligence. The type and style of this evaluation is

debated and Htlefined. Some have proposed the idea of a machine cognitive decathlon

(Hernandez Orallo, 2017; Vere, 1998} atestof mental flexibility. Featureoriented evaluation

is complicated by nogpecifcque t i ons around defining and meas
oriented evaluations remains a nascent idea and topic, combining both measurements and
evaluations of cognitive ability and personality (HernarOeallo, 2017:150), but it surely must

be the diection the field moves toward in an assessment of AGI.
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International Futures: Representing Al
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Figure 5. Representation of the IFs Model

Al Variables in IFs

We now turn to a discussion of the construction and
conceptualization of the Ahdicesin IFs.
Understanding the IFs platfori:importantfor
understandingpow the Al representation is integrated
within the tool and how it could be usednmdel
impacts of Al.International Futures (IFs) is an open
source, quantitative modeling tool for thinking about
long-term futures. Building on 3,600 historical data
series, IFs helps users understand historical patterns,
explore the current path of development and the
trajectory we appear to be ¢or Current Path)and
shape thinking about loAgrm futures. To do this, IFs
leverages relationships across hundreds of vasa
from twelve dynamic, interconnected systems of human
development. Figurg depicts the major suimodules

of the IFs system. The linkages shown are illustrative
rather than comprehensive, each liskomprised of
hundreds ofrariables. The IFs CurreRath represents
expectations for how development will unfold across
each of these systems absent significant alteration or
intervention (think drastic policy change, mamade or
natural disasters, conflict, or technological
discontinuitie$. The CurrenPath provides a necessary
reference point for alternative scenario analysis. It is
itself a dynamic forecast, driven by the variables and
relationships built into the model. Many of the
assumptions in the model can be modified by users to
better reflect thir own understanding of how these
systems are developing and unfolding across time.

The Alforecasting capabilitin IFs isaset of indiceshatestimates and forecasts global
development oértificial intelligence. At present does not comtin forward linkages, a taske
discuss iflatersectiors of this paperWe have added several variables to the IFs platform to
develop thenodeling capabilityThe Al represerdationforecasts progress along narrow, general,
and super artifial intelligence consistent with th@rceptualization discussed earlier

The first variable added to IFA]TASK,estimates and forecadtschnological progressong
each of the six aread narrow Al we defined earlier in the paper: computer visiahine
learning,natural language processingternet ofThings, robotics, anceasoningAITASKIs
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represented as an index scaled from 0O to 10, where 0O repneseéetzelopment, and 10

representfull or complete development (see below for a more irtrddiscussion obur

thinking along these lines). The index score along each of these narrow technologies is initialized
in 2015 (IFs base year).

The second variable added to IKF ASKGRrepresents thannualgrowth rate along each of
these technologgeand saturates on approachLfor each Each narrow technology grows at a
different paceestimateddy the authorsising inputs like: performance benchmadanplexity

of each technologynvestment, and levels of researgliT ASKReasoningrows athe slowest
paceof the AITASK indicesProgress along thiadexrepresents the movement towards
machines capable of reasoning completely, complex deaisaking, and provided with a sense
of purpose and awareness of the world around tA@&y movement fom narrow to general Al

in the IFs index ismplicitly constrained by the pace AfTASKReasoningregardlessf

progress among the other areas of narrow Al development.

Finally, we have also add@&dMACHIQ, a variablewvhich representdhe movemenfrom narrow
Al to general anduperintelligenAl. AIMACHIQ is scaledasan index representing machine 1Q
scoresroughly corresponding withumanlevel IQscoresIn the Current Pathhe movement
from narrowto general Al occurs when an index score @fidachieved for each of the narrow
technologies denominated unddir ASK ,except forAITASK Reasoningyhichis at 5. This
transition isreflected oPAIMACHIQ at an index score @round60. At that pant, the index
forecasts general Alill have beerachievel, thougha score of 60 correspondsrt@mchines with
the equivalent of lowevel human intelligenc@IMACHIQ then grows algorithmically as
AITASK Reasoningontinues to improvesaturating towardn index score of 200 24dTASK
Reasoningeaches 10. AAMIMACHIQ score of between 180 and 2@&presents machine
superntelligence, as this widd correspond witlsome of thénighest reportetf) scores among
humans’

In addition to each of the variables, we haveeadparameters describedliable 6to each of
the Al variables. Parameters allow users to exogenously dd@ustl representation with
maximum flexibilityto bring the forecasin line with users own expectations of Al development.

2 Marilyn Vos Savant has the highest living recordedd@ay with a score of 228. Renowned physicist Stephen
Hawking has a recorded IQ of around 160.
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Table6. Al Variables Added to IFs

Definition Scale

AITASK Index measuring developmental progress of six areas o 1-10
narrow Al technology: machine learning, computer visio
natural language processing, 10T, robotics, and machine (for each
reasoning. IFs forecasts development along each of the category of
different narrow technologies. narrow
Variables technology)
AITASKGR Representsstimateddifferential,annual growth rates of
each narrow technology
AIMACHIQ Index measuring the level and capacity of machine 1-200
intelligence. Index scogecorrespond approximately to
humanlevel 1Q scores and intelligence.
aitaskm Multiplicative parameter allowing users to adjust the Setto 1inthe
growth of taskspecific technologies. Users can acceleral Current Path
or slow this parameter by up to 1,000 percardither
direction.
aimachigm Multiplicative parameter allowing users to adjust the Setb 1inthe
growth rate of general and superintelligent Al. Users car Current Path
accelerate or slow this parameter by up to 1,000 percen
either direction

Parameters

There is no comprehensive, standardidaethset or series of benchmanksasuring the growth

of artificial intelligence from which we can draw. There is also much debate and controversy
over the pace of developmantd uncertairyt around what the future of the fietduldlook like.
With thatuncertainty in mindthe nextsectionoutlinesthe thinking behind thimdicesand

growth rates along the six categories of narrow Al technology.

Initializing AITASK: Rapid Progressver thePast 5 Years

Many of the notable performance benchmarks outlindthlsle 4have occurred recently. If we

were constructing thial forecastfive to ten years ago each of these technologies would have
been initialized with a score of one. New breaktigtwiin Deep Learning technology, a

foundational element of many of the technologies above, including computer vision, machine
learning, and natural language processing, has been responsible for much of the progress. Deep
Learning and artificial neural nebsk technology has been around since the 1980s and 1990s,

but operated largely at the fringes of main Al research.

Today however, the results produced through Deep Learning have come about because

researchers have the means to store, manipulate, and thté¢ vast amount of data produced by

an increasingly digital world. The result has been an explosion of successful technologies.
Stanfordbdbs I mageNet competition began in 2010
acquired in 2010 and first intraded as part of the iPhone product line in 2011, Google

responded by releasing Google Now in 2012. Google Brain, the project at Google centered on

Deep Learningopened in 2012According to a company spokesperson2012 Google was

working on two Deep Larning projects. Today it is working on over 1,d@@rloff, 2016) In

2016, Google overhauled Google Translate using artificial neural networks, showing significant
results in both accuracy and fluency of translation. These improvemeregive result of a
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project that began in 2011. In 2013, Facebook hired Yann LeCun, a leading Deep Learning
scientist, to run its new Al lab. In 2016 Microsoft consolidated much of its Al portfolio into an
umbrella Al and Research Group, which brings tbgemore than 5,000 computer scientists
working on Akbased projects (Microsoft, 2016). According to CB Insights, a market analytics
firm, in the second quarter of 2016 nearly 121 rounds of equity fundraising were held for Al
based startips, compared witjust 20 in 201XParloff, 2016)

Initializing AITASK: Under standing the Shortcomi ng

Yet, despite some referring to the@ewskraus,nt per
2016) the functionality ofAl remains very limited. As Al pioneer and Director of Baidu Al,

Andrew Ng, points out, almost all Al technologies today operate on a simple premise: data input

is used to generate a simple respdidgg 2016) In this section we look at the rcant

shortcoming®f each Al technologyo provide context for and justitye initial indices score.

Machine Learning
AITASK Machine Learning 2018dex Score: 3

New algorithms that improve both the accuracy and speed of machine learning havelbden fue
by new technologies like Deep Learning and Reinforcement Learning. Corresponding
performance in taskpecific activities reflects that improvement (reflected in Tdhle

Additionally, the market for machine learning technology was estimated at &6WL8dnillion

in 2015, forecast to grow to 3.7 billion by 20@darketsandMarkets, 2016auggesting these
improvements are catalyzing interest and funding. Yet nrapyovements have not necessarily

been uniform. For instance, machine translation accuracydh tawer among less commonly
spoken languages. In 2012, the accuracy of Ketedinglish translation or Farsd-English

translation hovered between only 13 and 19 percent, while it had improved to over 35 percent for
Arabic and Chinese translatiomMgachine learning technology today remaintespendent on
massive volumes of data to fAtraino machines.
manipulation, and management of the data. Examples of common applications of machine
learning are listed in Table Each involves a simple binary output and massive data input.

While each is a simple task for a human, as we will see below, machines can be easily fooled

Table7. Examples of Machine Learning.

Input A Output B Application

Picture Does the picture contain faces? (0,1) Photo tagging
Loan application Will the user repay the loan (0,1) Finances

Add and user information Will this user click on the ad? (0,1) Ad-based targeting

A result of these benchmarks, we have initiali268ASKMachine Learningat 3 in 2015A

machine learning index score of 10 represents perfect machine learning capabilities. To achieve
an index score of 10, machine learning would be capable of learning almost any task as well as a
human with the ability toproduce complex, sophisticated output. Additionally, machine learning
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approaching 10 would contain sophisticated algorithms such that it is capable of learning from
far smaller volumes of data than todayds mode
maripulate and absorb data without human input.

Computer Vision
AITASK Computer VisioR015Index Score: 3

Another area which has seen rapid improvement in the last five years is computer vision. The Al
ImageNet competition, hosted by Stanford, has regaigmificant improvement irmage
identification, localization, and object detectioetween 2011 and 2015ee BRble4). The

market for computer vision is estimated to grow from $5.7 billion in 2014 to over $48 billion in
2022(Tractica, 201k

But it stildl remains very easy to fool comput
misclassifying objects completely erroneously. Many of the tasks relating completed by

computer vision are extremely basic for humans. There remain importa&neddés between

machine andhuman visionthas ci ent i st s dondét fully under st anc
machineMac hi nes can still be easily fooled in wa:
paper found that it was quite easy to produce imagestinaans would immediately identify as

gibberish, only for a computer to classify them as objects with 99 percent conf{tlgugen et

al., 2015) Another similar study found that changing images in ways almost imperceptible to

humans caused machines to misclassify objects entirely, for insasséying a lion as a

library (Szegedy et al., 201.3lore recently, researchers in France and Switzerland showe

small, almost imperceptible changes to an image could cause computers to mistake a squirrel for

a fox, or a coffee pot for a macgoosaviDezfooli et al., 2016; Rutkin, 2017)

These challenges stem from fundamental differences in the way thahfamd computers

l earn to fiseeod i meameago.recagtize huthbemssentually leasndch o o |
recognize common characteristafseachafter seeing many different exampleltimately they

come to recognize numbers even if the wayninabes arewritten is new to them. Computers

learn to see by being fed millions of images of labeled data. It picks up the features that enable it

to correctly identifythe object of interesBut, machines, unlike humarsannot see the whole

picture.They learn from the pixels in a photo, while learning how tell different pixels apart. So,
imperceptible changes in the pixel composition, alterations that stop short of changing the image

in the photo, could fool the machine into thinking the photo is something i snét ( Rut ki n

Given the rapid progress in image and object identification, but accepting the significant
limitations, we initializeAITASK Computer Visioat an index score of 3 in 2B1A computer
vision index score of 10 would reflect cpaters with vision on par with humans, with the
ability to distinguish, localize, differentiate without being easily fooledldgwy machines with
vision equivalento that of a human also requireemens of reasoning to be able to identify,
process, ahunderstand the world thégeeo
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Natural Language Processing
AITASKNatural Language Processing 20lislex Score: 2

Natural language processing has improved both in terms of its ability to answer human generated
inquiries andalso its ability to dapher and translate between different human languages
Investment and attention have both increased; the market for natural language processing
products is expected gyow from $7.6 billion in 20160 $16 billion by 2021

(MarketsandMarkets, 2016b)

Arguably however, language remains one of the final frontiers of humtelhigence. Machines

capable of a full suite of haral language capabilities $$ill more of a distant dream than a

shortt er m reality. Machines still dondét MAunder st
automated translaticdinom spoken wad in real time is limited by challenges that humans

navigate with ease. Individual sounds are often not pronoungsalation, in fluenbhuman

conversation they come incanstant stream. Machines shiive difficulty understanding

nuanced vocabularghildren and elderly speakers, or competing with significant background
noise(The Economist, 2017)

Researchers are also interested in producinthinas capable of speech generation and
conversation. The use of artificial neural network technology has helped researchers develop
machines capable of producing more fluent sounding speech, but speech generation represents a
whole new set of coplex chalenges. For instancergsody, the modulation of speed, pitch, and
volume to convey meaning an important component of human speech and interaction, which
computers lack. Developing computers able to place stress on the correct words or parts of a
sentmce to convey meaning is incredibly difficu
estimatgThe Economist, 2017Additionally, fully fluent @nversation is built around shared
knowledge and an understanding of the world, something that machinels ldadory,

conversation between humaansd machingrepresents a series of linked steps: speech

recognition, synthesis, analysis of syntax andss#its, understanding of context, and dialogue,

as well as commerense and practical reabrld understanding. Scientists still do not fully
understand how the human brain pulls all of these disparate threads together to generate
conversationdoing so inmachines is a lonterm task(The Economist, 2017)

NLP is initializedaa n i nde x s c o.rFelly autbmafe@nachina tra2sériftibn and
translation remains a distant dream. Language is often considered the dedimiieg of human
intelligence The Winograd Schema challenge, designed specifically to test how well machines
understand and interpret language, was first held in 2016.&dterttry scored a 58 percent, a
resultdescribed s a fAbi t b e({Adkeman,2016)Accordagta smme, machine
transcription, translation, or language generation will never replace the benefits of understanding
language antiumanled translation. When people learn new words and phrase, they are not just
learning the literal semantics or syntax of the individual words, they also learn cultural values
and normgLewis-kraus, 2016)

A score of 10 along the natural language processing index represents machines capable of fully
automated trasctription and translation with close to 95 percent accuracgblyhuman level).
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A score of 10 represents machines capable of hearing, understanding, synthesizing, and
generating language to participate in complex conversations on a variety of tompibsctort
has not necessarily been trained.

Internet of Things
AITASK Internet of Things 2018dex Score: 2

The growth of the Internet of Things has been fueled by rising internet connectivity and mobile
technology penetration. Smart phones in paldicare essential, as a service delivery and data
collection mechanism and will remain one of the primary interfaces through which users interact
with the l1oT. The 10T has been and is forecast to continue growing exponeblyatiyme

estimates there ctilbe asmany as 50 billion devices coruted to the 10T by around 2020.
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Figure 6. Number of Devices Connected to the Internet of Things vs. Size of the Population
Source:Howard, 2015

Despitethe sheer growth in the number of devicesrmxted to théoT, thetechnology is still

very much in its infancy. The rules and norms that govern the use of and privacy around loT
generated data remain-defined and opaque. Maximizing the benefits of 0T data requires
interoperability between défent 0T systems, today the vast majority of these systems are not
interoperable. Finally, most data generated by the IoT today is used for basic tasks like anomaly
detection and control, rather than mbsbusefufer vi c
function(Manyika et al, 2015

For these reasonthe lIoT ndex is initialized at 2 in 201but isforecast to grow rapidly given
expectedexponential growth ithe number o€onnected deees. An index score of 10

represents a world where 10T data is protected and privacy concerns assuaged. Data produced is
harnessed and analyzed to maximize efficiency on a broad social level. Fully smart cities and
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smart homes are the norm in most majorefigoed urban areas. Automated transportation has
become widespread not only as a result of the production of these cars, but also because cities are
investing in the sensors and technology needed to produce the smart infrastructure that supports
automatediriving. Smart infrastructure could include sensors embedded in the roadway that
manages the flow and speed of traffic, sensors at intersections to reduce accidents and
congestion, and smart lanes capable of charging cars as the{Mhivgka et al., 2013)

According to a common definition @ s ma r t 0 tgleballsperdingoy gmart city

technology could cumulatively reach $41 trillion over the next 20 y@atsani, 2016)

Robotics
AITASK Robotics 201mdex Score: 2

Robots are already wedistablished in a number of fig|garticularly manufacturingdccording
to a2015report by Boston Consulting Group, robatsomplish close th0 percent of tasks in
the manufacturing industry todagetween 2010 and 2015, indual robotics sales increased by
a compound growth rate of around 16 percent annuafI®015 there were 254,00@dustrial
roboss sold (International Federation of Robotics, 2016)

The field of robotics is initialized a&n index of 1 in 2015Thismight seem surprising, given the

large swaths of manufacturing and light industry jobs already replaced by (Bt al.,

2016; Frey and OsborneQ23; Schwab and Samans, 201@&e functionality of most modern

robots, however, remains limited. Robots today can perform a significant number of basic tasks

that humans no longer want to gmfticularlyin manufacturing), or a few select tasks that

humans cannot perform, (such as traversing the surface rsf).Mae field is moving towards

the creation of robots that are capable of working efficiently and effectively alongsidnb.
Thesesec al | ed Acobots, 0 have prforvoaghlyahly$ geicentul t t o
of total globalsaleg(Hollinger, 2016)

Robots cannatompletetasks they were not constructggecifically to undertaken addition,

robotics technology builds on other areas of narrow Al like computer vision, machine learning,
and naturalanguage processing. Robotlm$ngs together both hardware and software,
advancinghe field ofrobotics requires improvements in both domafsilable market

research suggests that investment is coming. One estimate placed the global robotics market at
around $71 billion in 2015, growing to $135 billion byl2qWaters and Bradshaw, 2018he

sizeof the service robotics markatone could grovirom around $9 billion in 2016, growing to

$24 billion by 2024 Zion Market Research, 2017)

An index score of 10 would be abat that can respond to and perform a wialege of tasks for
which it has not formally prepared or trained. A score of 10 may even represent a robot that can
perform any general task as wad a human. Thigmains a distant goal. For instance, in 2016
Amazon held a contest to design a robot capaldeooking shelves in its warehouse. A task that
would be fairly simple with humans)e winning robotad an error rate of around 16 percent

and Amazorsaidthey did not plan tonake human workers redundamispite ofthese results
(Vincent, 2016)

29
Pardee Center: Modeling Al



Reasoning, Planning &ecisiormaking
AITASK Rasoning 203 Index Score: 1

This is initialized at 1 in 2013evelopment along this index is a distal driver pushing narrow Al
technology towardhe generalevel. Along this indexas reasoningpproachea score of Swe
forecastiow-level, basic gerral intelligent machine® begin to come into beind\s the index

moves towards 10, general &limproving, becoming as intelligent and capable as the average
human. A reasoning saof 10 corresponds to the advent of a generally intelligent machine on
par with human capabilities in reasoning, planning, language, visiomeaiglonmaking At

this point machine technology has a sense of purpose and understanding of the world around it.

Preliminary Resultand Discussion

We begin by presenting the Cent Path@r base case) results of the ikkrepresentatioand

forecast. Figur& below shows théorecast of narrow Al technology along the six key
technologiesThe rate of development is calculated and estimated as a funcperfaimance

along tak-specific competitions and evaluations, the estimated size of the market for each of
these technologies and forecasted growth of that market, as well as (where available) estimates
of academic publications in each of these domdihs.Internet of Thingseaches an index score

of 9first, around 2038Computer vision also proceeds rapidly, reaching an index score of
betweerd and 10around 2040Robotics and natural language processing are sloweing,

and do not reacascore of 9 010until around 208.
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Figure 7. Narrow Al Forecasfrom IFs v. 7.29 IP 2
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Under this approachhé movemenfrom narrow to general artificial intelligence is conceieéd
from afibottomupo perspectiveAlong thisline of thinking, the emergencd# a generally
intelligent machine must be developed from and baonéxisting narrow technologies. AGI
researchers have expressed support for this appfdachad, 199Q)and from our perspective
this is conceivably the only way that AGI is likely to emei@egress along each of these
technologies proceeas differential rates, and general Al will not emerge until these
technologies have reached adead levels andecome mor@tegrated. Moreoveprogression
towardsgeneral Al is constrained by the movemenfbfASK Reasoningvhich is both the

least developed and slowest moving of each @iidarrow technologies. General intelligence is
achieved wen the reasoning index reaches a score of 5, which corresponds with a machine IQ
score ofbetween 55 and 60r that of a human with very low intelligenéggure8 shows the
Current Pattiorecast of AIMACHIQ.The Current PatBuggests that a generallyeiligent
machine could be developes early a2040, though such a machine would have the
intelligence equdiwnaleé hi gteAMACHIQ buggedisilatan | o w
generally intelligent machine with average level human intelligence (gbnevakidered an 1Q
score between 90 and 11@uld more likely bexchieved beveen 2046 and 2050

From there, AIMACHIQ is forecast to grown line with improvements ithe capability of
general artificial intelligence. Al researchers have suggestedtisaperintelligence will come
aboutfrom positive feedback loops brought on by the invention of AGI (Bostrom, 1998).
AIMACHIQ approaches a machine 1Q scafel44, the equivalent offagh-intelligencescore
on the human IQ index by between 2055 and72@8MACHIQ begins to approach super
human 1Q (around 180, which only a handful of known hwsrteave ever achieved) by 2090,
suggesting that superintelligent Al could be achigl@dhe earliesthear the end of the current
century.
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Figure 8. Al Machine I1Q Base Case Forecasim IFsv. 7.29 IP 2
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We fully acknowledgéhe vast amount of uncertainty surrounding the developmiettificial
intelligence andhe variability arounda potential timelineNo comprehensive roadmap for
general Alexists. The best available estimates of when we may see AGI comeXpemt
surveys from the field. These provide important contexterlFs Current Path forecast.

The results from a number sfudiesusing the Delphi Technigden the fuure of AGI are
depicted below in Tabl®. The majority of respondents felt thesea 50percentchance of AGI
between 2040 and 2050, and a 90 percent chance of AGI on or after 2075. Notably, in one
survey close to 2 percent of respondents felt that Aaildvnever be achieved.

Table8. Literature Survey on Timeline for General Al Development

Study Details Results

Kurzweil (2005) In his bookthe Singularitynoted General Al will be present around the yeas5s
futurist Ray Kurzweil (now
Google Director of Al) la out
his forecast for the development

of general Al
Baum et al., Assessment of expert opinion  The consensus was that a large portion ofthe
(2011) from participants at the AG9 community believed AGI is possible around the midd
conference of the current century.
Bostrom & Surveyed 35 participants ata  Median results:
Sandberg, human level intelligence
(2011) conference in 2011 10% chance of AGI: 2028
50% chance of AGI: 2050
90% chance of AGI: 2150
Barrat & Surveyed participants at AGL Results:

Goertzel (2011) conferencéhosted by Google
42% of respondents: 2030
25% ofrespondents: 2050
20% of respondents: 2100
10% of respondents after 2100
2%: never

Muller and Electronic survey to hundreds o Median results:

Bostrom, (2014) Al experts and researchers
10% chancef AGI: 2022
50% chance of AGI2040
90% chance of AGI2075

In addition, Mueller & Bostrom (201 also asked participants when they felt we were likely to
see the transition from general intelligence to artificial superintelligdieeresponses indicated
a 10 percent likelihood that the transitioauldoccur within 2 years of the development of AGI
anda 75 percent likelihood within 30 years of AGI. The IFs forecast is generally in line with
these expert expectations.

3A method of group decisiemaking and forecasting that involves successively gathering the opinions of experts to
come to a consensistyle answer.
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We also cretiedseveral scenarios around filséure Al using the parameters described in téble
Accelerated Al, and Stalled Alnder the Accelerated Al scenario, Al proceeds at roughly
doubleits pacerelative tothe Current Path. In this scenario, general Al eegegound 2030,

and superintelligent Al technology is forecast to emerge midway through the current century.
Under the Stalled Al scenario, the reverse is true and Al development proceeds at half the pace
of the Current Path. General Al technology is moetast to emerge before approximately 2051,
and superintelligent Al is not achieved within this century. Even by close to 2100, available Al
technology measures 1Q scores of around 90, on pawgtagehuman intelligence. These
scenarios help give arsge of the flexibility of the forecast within IFs ahdw the Al index can

be manipulated to better match expectations.

The scenariodisplayedoelow underscore two fundamental uncertainties around the future of Al

with respect tahisforecastingexerci€ i) how Ahigho it can ulti maf
can Al achieve), anil) how fast it will get thereThe parameters added to IFs allow users to

control boh elements. The scenarios in Figure 9 both accelerate the pace of Al and adfatt its

level in 2100. UndeAccelerated Althe index reaches a score of close to 350 by 2100, whereas

Stalled Alonly achieves an index score of around 100 by 2100.
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Figure 9. Scenarios aroundl developmenaffectingboth rate of growh and end level in 210@om IFs v. 7.29 IR2

For the purposes of comparison and also to provide readers with a st#reseustomization

built into theAl indices, Figure 10 displays the results of scenarios that affect the rate of growth
of Al technobgies, but do not alter its end lewssi 2100 Both scenarios simulate50percent
increaseor decrease the rate ofAl development relative to the Current PathAkrcelerated Al

(2), Al converges towards an advanced machine IQ score of 180 moreyridyaidlin the Current
Path. In this scenario we expect to see general Al emerge between 2035 and 2038, and
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superintelligehmachinego come into being around makntury. After 2050 Al technology

growth slows as it converges towards a fixed level of sofgdiigence. In a similar patter

Stalled Al (2s | ows Al 06 $50pardentaetative to theyCurrent Path. In this scenario Al
Machine 1Q only begins to approach superintelligence by end of century (approaching an index
score of 15Q)but does notgproachthe maximumevel of capability by the end of the horizon
General Alaloned o etemebge untimid-206Q
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Figure 10. Scenarios around Aleyelgpment affecting only the rate of growth or development to 2100IFsm.29 IP v 4

International Futures: Exploring the Impacts of Artificial
Intelligence

As we have expressed throughout this report, Al will ldegpimpacts on many areas of human
developmentThe utility of this quantitative forecast of Al developmeirt be significantly

enhancedby connectinghe Al representatioto other areas of the IFs model that would allow us

to explore its impacat multiple leveloover both the medium and logrm. The fact that IFs is

integrated across so many differenttan development systems leaves it uniquely placed among
othermodeling efforts to capture the deep and wieging impact of Al. Connectingl to

other areas of the model would have to be done through a set of carefully cabblateds t i ci t y 0 ¢
that couldbe freely adjusted byusele pr opose to capture Al &6s i mp
particular: economic productivity, labor, and international ttadeugh production localization
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Economic Productivity

A near universal consensus in the literaturggests Al will improve economic productivity, but

analysis o thedepthof impact varies widelyProductivity, an assessment of output based on a

fixed number of inputs, is a benchmark éficiency of production and technological progress
(McGowan et al., 2015:21Nobel Prize winning economist Paul Krugman pointed out that with
respect to economic growth, fAproductivity 1isn
evely t h i(Krugroan, 199411). Fortunately, Al is poised to enhance productivity.

A 2016report by Accenture, a consulting firhaid out three avenues through whichoéuld

enhance economic activityhe first is through intelligent automation, wherein Al is able to
automate complex physical tasks, such as retrieving items in a warehouse. Increasingly
intelligent Al machines aranticipated to be able to adapt across different tasks and industries.
The second way Al Wiiimprove technology is by enhancing labor and capital, by freeing labor

to act more creatively, imaginatively, afidely. The third way Al could enhance produitti is

the result of diffusion, whereby innovation catalyzed by Al moves through diverse sectors of the
economyFor instance, iiverless cars will not only fundamentally change how our automobiles
work, they could entirely restructure the auto insurandestry, reduce traffic congestion,
accidents, and associated hospital bills, and stimulate demand for smart infrastructure. The extent
of the productivity increase in different sectandi be more closely tiedo how susceptible each
industry is to Altechnologies and/or automatiaather tharfactorslike the level of investment

or the level of development of the country in question.

Most analysis of Al and productivity today focusesestimatingthe benefits to productivity

over the next decade av.9n 2015Bank of AmericaMerrill Lynch estimatedhat robots and Al
technologies could bringdd an estimated $éllion to U.S. GDP irefficiency gainver the

next ten years, driven by the adoption of autonomous cars and .dBgribeir estimation

robotics alone could drive productivity gaios30 percent in many industrié¢lla et al., 2015)

The latest report from Mckinsey Global Instit(&)17)on labor and technology estimated that
Al-driven automation could increase global productivity by 0.8 percent to 1.4 percent annually
within the rext few yearsThesame repony Accenture Consulting is everone optimistic,
estimating that labor productivity be between 11 and 37 percent higher in a sample of OECD
counties in 2035 as a result of ATable9).

Table9. Forecasted Impacts of Al on Productivity in 2035
Source: Accenture, 2016

Country Percentage increase in
Labor Productivity in 2035
compared to Base

Sweden 37%
Finland 36%
United States 35%
United Kingdom 25%
Belgium 17%
Spain 11%
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Fewer attempts haueeen madéo measure productivitgnd automatiomsing historical data.

One attempt bywo researchers at Uppsala University and the London School of Economics
useddata from1993to 2007 in seventeen advanced economies. Across that period, the density
of robots in manufacturing centers increased 150 percent, and both total factor productivity and
wages increased. They find that robots increased GDP and labor productivity by 0.37 and 0.36
percentage points respectiveffthoughthere is less researoim auomation and productivity

using historical data, trergument for productivity gains from Al builds on a substantial body of
evidence of productivity gains in developecbromiesresulting from the ICT boom in the 1990s
and early 2000s. Research has idettipositive productivity gains both within industries

(Stiroh, 2002)and acrossountries and regioflsBl oom et al ., 2012; 006 Mah
2009; Qiang, 2009)

Nevertheless, with respect to productiviy,may be facing some strorgeadwinds. According

to figures published in August 2016, U.S. labor productivity levels declorettié third straight
guarter lasyear(Azeez, 2016)This is symptomatic of broader trends in the U.S. economy:
between 2000 and 2007 annual productivity grew at around 2.6 petoetwween 2007 and

2016, itgrewonfpoy one percent . I n the 199006s | CT gain
percent per annuifbam, 2017) This slowdown has not been restricted to just the United States,
nor is it necessarily specific to certain industries or se¢(kmda, 2016)Even by 2013, average
productivity was 2 percent below levels seen prior to the 2089 financial crisiscross the
OECD (McGowan et al., 2015peclining productivity among advanced economies is a
troubling phenomenoeconcerning tgolicymakers. A number of explanations have been put
forth, including: i) aging populations and structural economic inefficiencied{@pf012), ii)

labor reallocation challenggbklaltiwagner, 2011)iii) increasingly bureaucrat&nd unwieldy

firms (Hamel & Zanini, 2016)and iv) slowing technology diffusion amofigns and industries
(McGowan et al., 2015)

A simpler explanation may simply bleat technology has simply complicated calculations of

GDP growth and productivityvainstream fatformsfrom the Economisto theWorld

Economic Forunhave recently catalogued issues with GDP as an indicator of economic growth.
Mathematically, GDRepresents the suof all consumption, government spending and

investmen (plus exports minus importgrovernments commonly use GDP to set fixed growth

targetsl t gi ves a gener al pisetonomg of the health o

The attachment to GDP has led to measures@GRP per capita representing proxies for
standard of living economic wellbeing. And yet, economists increasingly point out that@DP
poor indicator of economic and social wellbe{®g Thompson, 2016} says little about
inclusive growth, ohow the gains from growth adistributed. It says nothing about

environmental degradatnt hat may result from growt h. 't do
actually improving peopleds | ivesDPmaymael yet, a
anachronistic and misleading. It may fail entirely to capture the complexoffadeetween prent

and future, work and | eisure, 6égoodd growth an

is a single, concrete number. For the timang, we may be stuck wittdigPilling, 2014)
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Internet contribution to GDP in select large Sector contribution to GDP, 2009

and developed economies,! 2009 Share of GDP % of total GO
3 billio & .
Real estate i 11.0
Private 738 1.8 Financial services i 54
consumption . H
Privat I Health care H 6.3
rivate H
investment |395 1.0 Construction : 5.4
Public 209 o Discrete manufacturing 52
expenditure Transportation i39
l Education 30
Trade balance 36 0.1 o 1
| Communication 3.0
Total 1,376 3.4 parcent Agriculture 22
of GDP Utilities 21
Total estimated worldwide contribution of Internaet: Mining 1.7
$1,672 billion (2.9 percent of total GDP)? N
Internet?: 3.4
Figure 121. Internet Contribution to GDP Figure122. Sector Contribution to GDP
Source: Manyika & Roxburgh, 2011 Source: Manyika & Roxburgh, 2011

GDP is also problematic because it may not fully capture the benghtsdifital economy. GDRas

not kept pace with changes in the way the ecgnaorks(Libert and Beck, 2016 GDP
misrepresentenportant activities related to things likeowledge creatiomgroductquality
improvementsstayathome parentingor the gig economylrhe sharing economy (think Uber or
AirBnb) may not be properly valued thigluexisting measurements. By one estimate, the sharing
economy may have been worth around $14 billion in 2014, and could grow to $335 billion by 2025
(Yaraghi and Ravi, 2016Misrepresenting or failg to capture such rapidly growingndustry

would skewmeasurements of our trpeoductivity.

With this debate over GDP and productivity in mind, any discussion over the impact of Al on
produdivity should entertain the conceptf i ¢ 0 n s u nhatisthestatat vplde togshe 0 t
consumer for the use of an online good or service less any costs that consumers pay to access those
servicedPélissié du Rausas et al., 201I0Yis has been advanced as a foundational concept in
estimating the vaie of the digital economy.

A201lr eport from Mckinsey Gl obal put the value of
accounting fo morethan 3 percent of global GDP among developed courtiféswere a sector,

the internet would be more significant than agriculture or util{&@gure 1). Across the different

countries explored in the report, the total consumer surplus réamge®10 billion in Germany and

France tanear$64 billion in the United Stateé separate but related piece of Mckinsey analysis
(also2011)looked at the economic value of internet search in five major economies (Brazil, France,

India, Germany, and the United States). They estimated internet search was worth&8@€e to

billion across the global economy. Of that, roughly 31 per@&a#0 billion) is not cajured in GDP

statistics, but representensumer surplus, or value accruing from benefits of convenikeneer,

prices, and ease of information access.

Other studlies have attempted to measure the impact of the internet on GDP and consumer surplus.
One 2009 study completed by consultants with Harvard Business School estimated that
approximately2 percent of Americans were employed directly or indirectly by intesiated

4 Based onmanalysis of 13 economies accounting for 70 percent of global GDP
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activities (advertising, commerce, IT infrastructure, maintenance), generating close to $300 billion in
wages. In addition to jobs, the internet adds an estin§dté8 billion to the U.S. economy through

retail, advertising, and payments to intreervice providers. Moreover, between work and leisure,
they estimated Americans spend close to 68 hours per month on the internet, which produces an
estimated $680 billiomi value(Quelch, 2009)A 2016 study from Georgetown University estimated
thatfor every $1 spent usirigber, a U.Sbasedide-sharing service$1.60 of consumer surplus was
generated. They estimated that across the U.S., Uber helped generate $6.8 billion in consumer
benefits(Cohen et al., 2016)

Nevertheless, consumer surplus is notoriously difficult to measleasuring surplus requires
knowing the demand for a produBut manydigital services like Facebook and Google are free.
Withouta price, it is difficult to quantify demand. Moreover, users of digital services like Facebook
derive different levels of surplus or satisfactidihe value we place on Facebook is dependention o
networks; if more of our friends are actively engaged with Facebook and social media, we will derive
greater value. These kinds of implications raise questiomstavhether it is possible to derive a
single demand curve for digital productd.the sane time,the growth of the internet and the digital
economy is undeniable, and many of its weHareducing activities are not currently well captured

in GDP measurements. New methodsaybturingvalue-add in the digital age wipproduce a more
accurate fgture of productivity, particularly in the developed world, and allow researchers and
policymakers taespond and adapt appropriately

Labor

In the present day, nothing captures the attention of mainstream media and policymakers like the
potential impatof artificial intelligenceon labor, particularly through the computerization and
automation of jobsAt the 2017 World Economic Forum in Davaspanel of technology leaders

and Al expertgocused not oithe potential for large profits and the busingams but how to

deal with those left behind in tliggital age(Bradshav, 2017) The populist backlash to the

impacts of globalization that culminated in Brexit and the election of Donald Trump as President
in the United States, coupled with the rise of populist parties in Europe shows that these concerns
are well foundecnd can have real political implication&dding fuel to the flames gfopulist
sentiments are headliggabbing analyses such as gt 3report by from Oxford University

that estimated close to 47 percent of jobs in the U.S. labdeeinaere at rislof automation in

the next 10 year@-rey & Osborne, 2013)Perhaps Al is leading us all into a jobless future.

In reality, it is difficult to quantify the effect of technology on labor, and even more difficult to
predict thescope andieadth of future automatiofor every headline predicting massseial
dislocation from Al, therarecorrespondin@nalysegpredicting that Al will unleash a new wave
of jobs in new industries that will undoubtedly emerge from the Al revolutiba.ogimists
argue that Al will take over jobs that atell and dangeroygreeing up human labor for more
creative and fulfilling tasksThis remains a widely debated and haibyntested issue. Let us look
atsome of the forecasted implications.

The 2016 Wdd Economic Forum produced a background report on the future of jobs. In the
report, they surveyed 15 of the worl dés | arge
workers or 65 percent of the total global workforce. They concluded that arirfitetigence

will lead to a net loss of 5.1 million jobs between 2015 and 2020 (7.2 million lost, 2.1 million
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gained). Consequently, they estimate global unemployment could rise by 0.3 f@ctevdb &
Samans, 2016Mckinsey Global Institute estimated that activities accounting for close to $15
trillion in wages globally could be automated by adapting current technologies, and that half of
all work today could be automated away2055(Manyika et al., 2017While developed

countries are likely texperience the effects of Al more rapidly because their economies depend
more on technologythe effects are by no means restricted to the developed world. According to
the World Bank, as many as 77 percent of jobs in China, 69% in India, and 85% idthay

be at risk of automatiofWorld Bank Group, 2016)The jobs at risk for automation are highly
repetitive tasks in structured environmemisd data collection and analydisiborers in

developing countries may also be sensing a trend: according to a survey of workers in 13
countries, 80 percent of respondents in China and 62 percent in India felt Al would replace
human labor in repetitive $&s. In Germany and the U.K. by contrast, only 39 and 45 percent of
respondents felt the same way (Wong, 2016). The jobs at risk for automation are highly
repetitive tasks in structured environments, and data collection and analysis. Sectorgistost at
he U.S. market include manufacturing, food service, retail, and some service sectors (Manyika et
al, 2017).

Estimating the impact of Al on labafso forces us to think about joas a series of tasks rather
than as one monolithic entity. The same Mckyn&éobal InstituteReport actually estimates that
only 5 percent of jobs could be fully automated, but that close to 60 percent of jobs in the U.S.
market could be up to 30 percent automated at a task level within the next 20 ysaaslds

weight to theargument of optimists that Al will actually free human labor for more meaningful
activity. A 2016 report from the OECD looked at the prospects of automation across OECD
countries. Employing similar estimation techniques as the Oxford papeontrollingfor

within job tasking they estimated the risk of computerizatsord found on average p&rcent of
jobs are atisk (Arntz et al., 2016)

There is more evidence that technology creates jobs by creating new products, changing
preferences, and inducing competitiveness. In a 2016 report, analysts from Deloitte looked at the
history of jobs and teclohogy in the U.S. and U.K. between 1871 and todagy concluded

that over the past 144 years, technology has created more jobs tharosth@éile technology

has replaced some jobs, it has created new ones in knowledge and servicélseatediche

and law. Technology has reduced the cost of basic goods and raisedsrma@mpting the

creation of new jobs to meet changing demg@tdwart et al., 2015)

Localization of Production and International Trade

Another trend that could be sigieéntly impacted by the rise of artificial intelligence deserves
consideration: reshoring and the localization of production. Automated technologies are making
it increasingly inexpensive for companies to produce gabtieme reducing the need for

offshaing in search otheap laboand competitiveln the U.S. there has been discussion around
the idea of reshoring and anecdotal evidence sugigeshappeningyetcritics contest the U.S.
government does not maintain exhaustive dataeeshoringand ttatthe definitionof reshoring

itself remainscontestedthus itis difficult to say whetheit representgan industrywide trend

(Rivkin, 2014)
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There is plenty ohnecdotakvidence to hinat a trendThe term reshoring refers to the process

of relocating production centers in typically developed countig2012)MIT survey of 340
participants from the manuf act uriidnegr iinngdou sbtrriyn g
manufacturing Ack to U.S. shores, while2®13report in the Economist found that between 37

and 48 percent of manufacturing firms with $1 billion or more in revémateveresurveyed

were considering reshoring or had already begun the prdodasdual examples of large

companies moving production back to th&lUor Europe have appeared in the méaiquently

in recent year§Oldenski, 20158)For instance:

In 2009 General Electric relocated production of water heaters from China to Kentucky
In 2010 Master Lock returdel00 jobs to MilwaukeaNisconsin

In 2012 Caterpillar opened a new plant in Texas

In 2014 General Motors moved a production plant from Mexico to Tennessee

In 2015 Ford begaannounced it would begproducing engines at its Cleveland auto

plant

1 In August2016, Adidas opened its first manufacturing plant in Germany in over 30 years

= =4 =4 A -

The anectodal evidence does not necessarily constitute a trend. For iristanee, ir es hor i ng
index, 0 put t oget AEearnbyyepocasthatsthere weaeroolyabd@ifir o u p

cases of reshoring in the U.S. in 2015, down f&8@ cases 2014. The index estimates there
were210casesin 2013, 104 in 2012, 64 in 2011, and 16 in 2011, small figures when considering

that U.S. multinational corporations employ as many as 36 million people worl{(idenski,

2015) These examples of reshoring also say nothing of any concurrent offshoring activity that

may have happened duritige same period.

Published U.S. reshoring cases
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20m 2012 23 2014 20M15f

Figure 13. Published Cases of U.S. "Reshoring"
Source: ATKearney, 2015

Neverthelesghe fact remains that automation, coupled with-tmgt energy and rising wages in
the developing world, particularly Clamand Indiahas the potential to make companies rethink
where they base their operations. There is also a strong pull for companies to base operations
close to theiprimarymarkets to reduce shipping time and costs and improve their ability to
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respond tdocal market needsnd fluctuationsMoreoveti n t odayds popul
there are incentives to encourage companies to invest ldcedig.AH e d wor | d,
that the majority of production happens locally, reducinghdeessityfor thecrossborder
movement of goodand services.

p C

St
t 6s |

The energy sector is one area where fibientialtrend could manifest itself with significant
implicationsfor global tradeAl has thepotential to disrupt current energy patternsiiying
growth inrenewable productiotihat causes a reduction in the volume of international trade
traditional energy pragtts, particularly fossil fuels

Al is already improving the efficacy of renewable energy producfaore challenge in
harnessing renewable enagiike wind and solar is their intermittendgachine learning is
helping to overcome this hurdle by crunchnegttime data orweather conditions to pdoice
accurate forecs allowing companies tbetterharnesshesesourcegBullis, 2014) In
Germany, companies are using machine learning twbrdata and predict wind generation
capacity in 4&our increments which allows the national energy grid to respond to energy
demand withoutelying on traditional energy sources to cover shortfglsThompson, 2016)

Al is also poised tdoost renewable generatibg significantly enhancing demaisitie

efficiency. Machine learning, coupled with smart meters and smart applications, can help large
grid systems identifgonsumption patterns and adjust energy provision and storage accordingly.
Al technologyis being applied to mine data that allows grid systems to cpmégth suitable

and appropriate risk/reward mechanisms that both incentivize their customers to participate in
smart energy and obtain measurable ben@itdu, 2017)We can already see some of these
patterns beginning to emerder instance2016 was the cleanest year on record for the U.K.,
where cal-fired energy production fell to under p@rcent of total production, down from 40
percent in 2012Vind power generation alone was higher than coal, at 10.2 pévddson &

Staffell, 2017)Ona SmdayinMay 2016, c¢close to 100 percent of
was met using only renewable sources, primarily wind and solar. For a short 15 minute window
during that day, power prices in Germany actually went negéivankelman, 2016)

The growth of renewable energgipable of being domestically sour@dl harnesseuas

important implications for global trade. Crude oil and its derivatives remains the most valuable
traded commodity in the worldccording tothe UN Conference on Trade and Development
(UNCTAD), trade inoil, gas, and petroleum prodsevereestimated at between $1 and $2

trillion in 2014 and 2015, among the largest of the 25 categoirigsods and servicésackedby

the organizationBritish Petroleun{BP) estimated that in 2015 close to 1.02 billion tons of crude

oil were exported in 2015 and 1.9 billion tons were impofBrdish Petroleum, 2016)The

globaltrade in energy productemains significantoday, butrenewable gneratiorcould slow

that tradeThe IFs Current Path Foretastimates thaty 2050 close to 40 percent of the

worl dés energy production wi |dround 6 peeentfftadaym r en e
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Conclusion

This report has detailed tlsenceptual development of Ahd explained the constructiohan

Al representatiom IFs. It has also laid out the potential for modeling the impact o¥iin

IFswith a particular focus on economic productivity, labor, emernational tradend

production localizationWe will not try to summarize our findings ledbut instead encourage

the reader to revisthe executive summary. We conclude this report by reminding readers of the
benefits that quantitative modeling can bringhte understanding of Als disparate impacts.

We have been forthcoming about the lesfeuncertainty surrounding this forecasting exercise

and have designed the Adpresentatioto provide maximum user flexibility and fréem.

Artificial Intelligence is rapidly unfolding and expected to have broad social and global impact.
Toallowustdbet t er unpack Al 6s deveAltwmptheearteasofteequi r es
IFs model. IFs remains uniquely placed to pursue this endeavor and we fully believe further
exploration and forecasting of this issue will be beneficial to the research cayanah

broader public alike.
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