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The Frederick S. Pardee Center for International Futures 
 

The Frederick S. Pardee Center for International Futures is based at the Josef Korbel School of 

International Studies at the University of Denver. The Pardee Center specializes in helping 

governments, international organizations, and private sector organizations frame uncertainty and 

think strategically about the future. The Pardee Center focuses on exploring past development 

trends, understanding the complex inter-relationships that drive development outcomes, and 

shaping policies that communicate and achieve a clear development strategy.  

 

International Futures (IFs) is a free and open-source quantitative tool for thinking about long-

term futures. The platform helps users to understand dynamics within and across global systems, 

and to think systematically about potential trends, development goals and targets. While no 

software can reliably predict the future, IFs forecasts ð which are calculated using historical 

data and a mix of quantitative modelling approaches ð offer a broad and transparent way to 

think about the tradeoffs in policymaking. 

 

There are three main avenues for analysis in IFs: historical data analysis (cross-sectional and 

longitudinal) of more than 3,500 series, Current Path analysis (how dynamic global systems 

seem to be developing), and alternative scenario development (exploring if-then statements about 

the future). To do this, IFs integrates relationships across 186 countries and 12 core systems, 

including: agriculture, demographics, economics, education, energy, environment, finance, 

governance, health, infrastructure, international politics, and technology. The sub models for 

each system are dynamically connected, so IFs can simulate how changes in one system may 

lead to changes across all others. As a result, IFs endogenizes more variables and relationships 

from a wider range of key development systems than any other model in the world.  

 

IFs is developed by The Frederick S. Pardee Center for International Futures, based at the Josef 

Korbel School of International Studies at the University of Denver in Colorado, USA. It was 

originally created by Professor Barry B. Hughes.  

 

Learn more about IFs or download the tool for free at pardee.du.edu. 
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Figure 1.A representation of the dynamic interactions across systems in the International Futures (IFs) model 

 

The Current Path Scenario 
 

The IFs Current Path is a collection of interacting forecasts that, while dynamic, represent a 

continuation of current policy choices and environmental conditions. Although the Current Path 

generally demonstrates continuity with historical patterns, it provides a structure that generates a 

wide range of non-linear forecasts rather than just a simple linear extrapolation of historical 

trends. The Current Path assumes no major paradigm shifts, seismic policy changes or impactful 

low-probability events. Given that the Current Path is built from initial conditions of historical 

variables and is analyzed in comparison to other forecasts of particular issue areas, it can be a 

valuable starting point to carry out scenario analysis and construct alternative future scenarios. 
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Executive Summary 

 
Artificial intelligence, a general term for the science and development of machines capable of 

completing tasks that would normally require human intelligence, is an exciting field of research 

and technology with deep potential impacts across the realm of human activity. A quantitative 

forecast of AI, while challenging, is important in helping us better understand how artificial 

intelligence is unfolding and its potential implications at a national, regional, and global level. 

 

This paper describes a global AI representation and forecast capability out to the year 2100. A 

series of AI indices were developed within the International Futures (IFs) integrated assessment 

platform, a quantitative macro-level system that produces dynamic forecasts for 186 countries. 

IFs models 11 different aspects of global human development, including: agriculture, economics, 

demographics, energy, infrastructure, environment, water, governance, health, education, 

finance, technology, and international politics. The models are extensively interconnected; 

changes in one affect every other. 

 

Given its comprehensiveness, IFs is uniquely placed to forecast AI and explore its wide impact. 

This report focuses on the conceptualization and operationalization of AI indices and provides 

initial forecast results. An exploration of the quantitative impact of AI is left for future research, 

but the final section of the report lays out three main areas ripe for exploration within the IFs 

context: economic productivity, labor, and international trade with production localization 

(including that associated with growth of renewable energy). 

 

Following the lead of others, this forecasting exercise conceptualizes artificial intelligence in 

three categories: narrow artificial intelligence, general artificial intelligence and 

superintelligence. Todayôs AI is very much limited to the most basic and narrow AI 

technologies. The evolution of general AI is debated and the timing uncertain. Since the birth of 

the AI research field in the 1950s, progress has been incremental and uneven. Over the last ten 

years, however, AI has enjoyed something of a surge in terms of both performance and funding. 

In the last five years alone the performance of AI technologies has reached a point where they 

are both commercially applicable and useful. Nevertheless, almost all progress has been 

restricted to narrow AI. Important drivers of AIôs technological progress include: i) improved 

hardware capacity, helped by the rise of cloud computing, ii) stronger software, aided by the 

growth of Big Data, iii) an explosion of commercially-oriented funding for AI technologies, and 

iv) the ever growing reach of information and communication technology. 

 

The AI representation in IFs forecasts the development of six encompassing (though neither fully 

exhaustive nor mutually excludable) areas of narrow AI technology: computer vision, machine 

learning, natural language processing, the Internet of Things (IoT), robotics, and reasoning. The 

forecast of each is initialized from an assessment of performance-based capability, funding 

levels, and research attention (publications). Each index progresses based on differentially 

estimated annual growth rates of each technology. As the index score for all approaches 10, we 

forecast general AI technology to become available. The level and capacity of general AI is 

forecast using a machine IQ index score, roughly analogous to human IQ scores. When machine 

IQ scores approach superhuman levels, we forecast the emergence of superintelligent AI.  
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Under this approach, the IFs forecast of AI is conceived of from the ñbottom-up.ò The progress 

of important narrow technologies, understandably advancing at different rates, ultimately 

generates general AI technology as these technologies improve along each narrow index and 

become more integrated. In the forecast, the emergence of general AI is constrained in particular 

by the rate of improvement in and development of machine reasoning and associated 

technologies, a foundational element for any general AI. Following the emergence of general AI, 

positive feedback loops from increased investment, technological ñknow-howò, and popular 

interest following will  lead to superintelligent AI. 

 

The Current Path forecast in IFs estimates that general AI could appear between 2040 and 2050. 

Superintelligent AI is forecast to be developed close to the end of the current century. 

Acknowledging the vast uncertainty over AIôs rate and breadth of development, the tool is 

designed to be maximally flexible so that users of the IFs model can adjust the forecast relative 

to their own expectations of AIôs progress. We already frame the Current Path with faster and 

slower scenarios of development. 

 

Of significant utility will be using this set of indices to explore AIôs potential impact on human 

society. AI will improve economic productivity, but assessments of current and future 

contributions vary widely. The extent of impact will be affected by the level of development, 

uptake among business and industry, and policymaking. Labor is also already being affected, 

with jobs in manufacturing and select service sectors being automated. AIôs effect on labor is 

hotly debated; some predict severe job losses and social instability while others predict AI will 

create swathes of new jobs while freeing humans from mundane toil to be more productive. AI 

may also accelerate the ñlocalizationò of production centers, with implications for the 

international movement of goods and services. For instance, AI will likely revolutionize the 

adoption of renewable energy technologies, affecting international trade of the worldôs most 

valuable traded commodity: oil and petroleum products.  

 

We appreciate that no quantitative modeling exercise can fully represent the impact of artificial 

intelligence, nor can it capture its evolution accurately. Nevertheless, we believe this work 

represents an important first attempt at a quantitative forecast of global AI development and 

opens the door for an essential exploration of the long-term impact. 
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Introduction and Overview 
 

The term Artificial Intelligence, or AI, conjures widely different images and expectations for 

many different people. Some imagine a world filled by autonomous cars zipping around without 

human input. Others may imagine a world where intelligent robots work alongside humans 

helping to remove much of the drudgery and daily toil from their lives. Some see rapid advances 

in healthcare and healthcare technologies, enabling humans to live healthier, fitter, and longer 

lives. Some may see a world where AI becomes the great equalizer, lowering the cost of 

production and making a wide range of goods available to broad swathes of the population. And 

yet for some, AI conjures fear and foreboding, a world characterized by mass dislocation of labor 

and inequality, generating vast social instability. The great fear is that artificial intelligence 

comes to surpass human capability with devastating and unknown consequences. 

 

Despite these widely different predictions of future AI and human interaction, artificial 

intelligence technologies today remain remarkably limited and narrow, capable of generating 

only simple outputs like responding to questions, or identifying specific objects within images, 

or identifying anomalies from complex patterns of data. The world of autonomous agents with 

intelligence equaling or even exceeding that of humans is still largely a fantasy. And yet todayôs 

narrow AI technologies are advancing rapidly, doubling or even tripling performance over the 

past five to ten years. AI has been called the ñFourth Industrial Revolution,ò (Schwab and 

Samans, 2016) a recognition its potential impact across a number of important sectors of human 

development.  

 

AI will have far-reaching effects on the economy; enhancing productivity while at the same time 

shifting the value-add away from labor and towards capital-intensive machinery and industries. 

The direct effects on labor are hotly debated. AI technologies are already replacing labor in 

manufacturing and in some service sectors today, and pessimists suggest this is a harbinger of a 

broader trend that will lead to massive hollowing out of jobs brought on by automation of tasks 

and employment. Optimists counter this by pointing out that technology has historically been a 

net job creator, leading to the development of entirely new industries and specializations 

previously unavailable. AI will simply free up human capital to pursue more productive and 

meaningful pursuits, they say. In other sectors, the impact will be similarly broad. Autonomous 

cars could fundamentally restructure transportation infrastructure, reduce traffic accidents and 

associated congestion. AI could help drive renewable energy generation and improve demand-

side efficiencies, leading to massive growth in renewable power. AI could personalize education 

service delivery and produce tools that allow for life-long learning. AIôs potential is both wide 

and deep and only beginning to be realized. 

 

Given AIôs rapid advance and associated consequences, there is a need for modeling efforts that 

allow us to explore AIôs development and the associated impacts. The purpose of this paper is to 

document a modeling effort to build a quantitative forecast of artificial intelligence within the 

International Futures integrated assessment platform, housed at the Frederick S. Pardee Center 

for International Futures. While no modeling effort can fully capture the diverse impacts of the 

AI revolution, the integrated nature of the IFs system leaves it uniquely placed to model AI and 

explore the forward impacts. The AI representation is designed to be uniquely customizable 
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within IFs allowing users to calibrate the representation based on their own conceptions of how 

the field is progressing.  

 

We begin with consideration of some of the drivers of artificial intelligence, in particular: 

hardware and software development, the rise of Big Data and cloud computing, information and 

communication technology penetration rates, and growing investment. We discuss the 

construction of the indices and initial model results, and then suggest some potential sectors to 

explore the impact of AI within the IFs framework. In particular we highlight the potential 

impact on economic productivity, labor, and global trade patterns, particularly in the context of a 

potential movement towards localized production coupled and renewable energy generation. 

 

Conceptualizing the Field of Artificial I ntelligence 
 

Artificial intelligence refers generally to the development of machines and autonomous agents 

able to perform tasks normally requiring human-level intelligence. The field of AI was formally 

identified in the 1950s, and subsequent development was uneven, punctuated by prolonged 

periods of reduced attention and funding. Over the past five to ten years there has been renewed 

interest, particularly from commercial entities, coupled with rapid investment in AI and AI-

related technologies. By one estimate, in 2015 technology companies spent close to $8.5 billion 

on deals and investments in AI, four times as much as 2010 (Economist, 2016). In 2014 and 

2015 alone, eight global technology firms (including major firms like Google and Microsoft) 

made 26 acquisitions of start-ups producing AI technologies for an estimated $5 billion (Chen et 

al., 2016). In February 2017 Ford motor company announced it is to invest $1 billion into 

technologies to promote research on self-driving cars (Isaac & Boudette, 2017). These same 

technology giants and industry investors are currently engaged in a fierce competition for talent 

to develop an AI platform that will become industry standard, allowing that company or set of 

companies to control development for years to come.  

 

The field of AI is changing rapidly; today it is something of a ñWild Wild Westò for both 

research and investment. The 2016 Association for the Advancement of Artificial Intelligence 

Conference, one of the largest, accepted submissions to over 30 sub-disciplines of artificial 

intelligence. Between 2012 and 2015, the Wall Street Journal estimated that close to 170 startups 

opened in Silicon Valley focused on AI (Waters, 2015). To help conceptualize such a large and 

varied field, we have drawn on multiple threads of research to build a representation in IFs that 

proceeds along three major categories or typologies: narrow, general, and super AI.   

 

Major AI Typologies 
 

Narrow (weak) AI : refers to specialized systems designed to perform only one task, such as 

speech and image recognition, or machine translation. Almost all recent progress in the field is 

happening within the confines of the narrow AI. Examples of narrow AI include: Apple iPhoneôs 

intelligent personal assistant Siri, Alexa from Amazon echo, Googleôs automated translation 

feature, video game AI, and automated customer support. Narrow AIôs rapid growth and 

development is being driven by improving technology, rising investment, and a growing 

recognition of substantial commercial and social benefits accruing from these technologies. 
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General (strong) AI:  Seeks to create a single system that exhibits general human intelligence 

across any cognitive area including language, perception, reasoning, creativity, and planning. 

Constructing machines with general AI is extremely complex and scientists have yet to do it. 

While the development of General AI may have been one of the original goals of the AI 

movement, there is a large amount of uncertainty around when General AI will emerge. Most 

research today is not focused on General AI and there is no comprehensive roadmap toward such 

an outcome (Stanford University, 2015). 

 

Superintelligent AI: AI superintelligence refers to an intellect ñany intellect that greatly exceeds 

the cognitive performance of humans in virtually all domains of interestò (Bostrom, 2014:26). 

This broad definition does not classify what form superintelligence could take, whether a 

network of computers, a robot, or something else entirely. It also treats superintelligence as a 

monolithic entity, when in fact it may be possible to create machines with ñsuperabilities,ò which 

we currently lack the ability to define and measure (Hernández Orallo, 2017:24). Researchers 

have suggested that the advent of general AI will create a positive feedback loop in both research 

and investment, leading to superintelligent machines.  

 

A Survey of Drivers of Artificial Intelligence 
 

To help understand and identify trends in AI development a survey of the key conceptual and 

technical drivers is important. Important drivers include: hardware and software development, 

commercial investment, Big Data and cloud computing, and levels of information and 

communication technology (ICT) penetration. We recognize this list may not be comprehensive 

nor exhaustive, but believe that these areas represent important proximate drivers of AI and 

important conceptual building blocks of the AI forecasting capability in IFs. 

 

Hardware Development 
 

AI development relies on two major technological thrusts: hardware and software. Hardware, or 

computing and processing power, has traditionally been conceived of in relation to Mooreôs 

Law. Named for Intel co-founder Gordon Moore, it refers to his observation in 1965 that the 

number of transistors on a computing microchip had doubled every year since their intervention, 

and was forecast to continue along that trajectory (Figure 2). 
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Computing power has increased exponentially 

since the law was first proposed in 1965. For 

instance, current microprocessors are almost four 

million times more powerful than the first 

microchip processors introduced in the early 

1970s (Schatsky et al, 2014). 

 

Nevertheless, there are indications we may be 

reaching the technological limits of Mooreôs 

Law. Raw computing power (as measured by 

transistors per chip) is reaching something of an 

inflection, leading many to speculate we are 

approaching the ñlimits of Mooreôs Lawò 

(Simonite, 2016; The Economist, 2016a). The 

number of transistors per chip has been 

plateauing since the early 2000ôs (Figure 3). 

  

By Intelôs own estimates, the number of 

transistors on a microchip may only continue 

doubling over the next five years (Bourzac, 

2016).  

 

 

 
Figure 3. Computer Processing Speeds 

Source: The Economist, 2016. 

Figure 2. Number of Transistor Components per Chip 

Source: Moore, 1965 
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Chip manufacturers are approaching the theoretical limits of space and physics that makes 

pushing Mooreôs Law further both technologically challenging and cost prohibitive. Mooreôs 

Law became a self-fulfilling prophecy because Intel made it so. They pushed investment and 

catalyzed innovation to produce more power and faster processing (The Economist, 2016). In the 

face of increasingly high costs and complex design considerations, processing speeds are 

unlikely to continue to grow in the same fashion. 

 

While important, Mooreôs Law represents only one of several assessments of computing power. 

Other industry measurements capture different aspects of raw hardware power. One 

measurement, Floating Point Operations per Second (FLOPS), is a raw estimate of the number of 

calculations a computer performs per second, an indication of computational performance. 

Another, Instructions Per Second (IPS), estimates how rapidly computers can respond to specific 

instructions and inputs, providing an indication of processing speed. 

 

The literature has attempted to estimate (in rough terms) global computing capacity using IPS 

and FLOPS as standard measurements. Hilbert and Lopez (2012) using a variety of data from 

1986 and 2007, estimated global computing capacity to be around 2 x 1020 IPS. They also 

estimate growth rates for general purpose computing hardware to have been around 61 percent 

over the same timeline. In another longitudinal study, Nordhaus (2001) calculated that 

computing performance has improved at an average rate of 55 percent annually since 1940, with 

variation by decade. A study from Oxford University in 2008 estimated that since 1940, MIPS/$ 

has grown by a factor of ten roughly every 5.6 years, while FLOPS/$ has grown by a factor of 

ten close to every 8 years (Sandberg and Bostrom, 2008). 

 

Building on this literature, in 2015, contributors to AI Impacts, an open-source research project 

based at the Oxford Futures Institute, estimated global computing capacity to be something in the 

region of 2 x 1020 ï 1.5 x 1021 FLOPS. But how does this power compare with the human brain? 

Plausible estimates of human brain computing power ranged from 1018, 1022, and 1025 FLOPS 

(Sandberg & Bostrom 2008; AI Impacts, 2015). In his 2005 book, Googleôs Ray Kurzweil 

claimed the human brain operated at the level of 1016 FLOPS. By these estimates, global 

hardware processing power has surpassed the human brain. Already, some of the most powerful 

supercomputers can process data in greater volumes and with much more speed than the human 

brain. Yet the human brain remains vastly more efficient, requiring only enough energy to power 

a dim light bulb, while the energy required for the best supercomputers could power 10,000 light 

bulbs (Fischetti, 2011). 

 

Software Capabilities 
 

AI development is being catalyzed by more than just more powerful hardware. Improved 

software has facilitated the development of more complex and powerful algorithms, an essential 

component of many new AI technologies. Deep learning, software capable of mimicking the 

brainôs neural network, can learn and train itself to detect patterns through exposure to data (Hof, 

2013). Deep Learning technologies diverge from classic approaches to AI, which typically relied 

on a pre-programmed set of rules defining what machines ñcanò and ñcannot do.ò Deep Learning 

is not constrained by established rules and has the capability to ñlearnò, but it requires vast 

amounts of data for learning and often breaks down if there are frequent shifts in data patterns 
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(Hawkins and Dubinsky, 2016).  According to market research, revenue from software using 

deep learning technology could reach over $10 billion by the mid 2020ôs, up from just over $100 

million in 2015 (Tractica, 2016). Deep Learning technology has enjoyed a renaissance alongside 

the growth of ñBig Data,ò powered by the accessibility and penetration of the internet, mobile 

devices, and social media, among other things. The vast amount of data being produced in these 

areas helps improve the quality of machine learning algorithms, which can be ñtrainedò through 

exposure to varied datasets (Guszcza et al., 2014). 

 

 

 
Figure 4. Forecasted Revenue for Software Built Using Deep Learning 

Source: Tractica, 2016 

 

While deep learning places a premium on data mining and pattern recognition, another emerging 

approach, Reinforcement Learning, moves toward decision-making and away from pattern 

recognition (Knight, 2017). Under this approach, AI machines ñlearn by doing;ò that is they 

attempt to perform a specific task hundreds or even thousands of times. The majority of attempts 

result in failure, yet with each success, the machine slowly learns to favor behavior 

accompanying each successful attempt. Reinforcement Learning builds on behavioral principles 

outlined by psychologist Edward Thorndike in the early 1900ôs. He designed an experiment that 

placed rats in enclosed boxes from which the only escape was by stepping on a lever that opened 

the box. Initially, the rats would only step on the lever by chance, but after repeated trials they 

began to associate the lever with an escape from the box, and the time spent in the box fell 

sharply (Knight, 2017). In March 2016 AlphaGo, a Google program trained using reinforcement 

learning, defeated Lee Sedol, one of the worldôs best Go players. This result was especially 

surprising because Go is an extremely complex game that cannot be reproduced by machines 

with conventional or simple rules-based programming. In past experts have estimated that a 

machine wouldnôt be able to defeat a human Go player for another decade or so (Knight, 2017).  
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Cloud Computing  
 

Alongside Big Data, the internet and cloud computing (internet-based computing services) are 

important catalysts of AI development. They have helped make vast amounts of data available to 

any device connected to the internet and they allow for crowdsourcing and collaboration that can 

improve AI systems (Schatsky et al., 2014). Cloud computing is fundamentally restructuring the 

licensing and delivery of software, operating platforms, and IT infrastructure. It is catalyzing a 

movement towards providing software resources as on-demand services (Diamandi et al., 2011).  

 

 
Table 1. Cloud Computing Services 

Computing Service Description Example Products 
Infrastructure as a Service (IaaS) Provides computing capabilities, 

storage and network infrastructure. 

Amazon EC2 and S3 Services 

Xdrive 

Platform as a Service  

(PaaS) 

Provide platforms that enable 

application design, development, 

and delivery to customers. 

Microsoft Windows Azure 

Salesforce.com platform 

Software as a Service 

 (SaaS) 

Software applications are delivered 

directly to customers and end users.  

Google Docs 

Microsoft Office 365 

Zoho 
Source: Diamandi et al, 2011.  

 

Cloud computing is still largely in its nascent stages, but the technology is evolving in parallel 

with many narrow AI applications. Microsoftôs website now offers many cognitive services 

through the cloud, including computer vision and language comprehension. Amazon Web 

Services has added data mining and predictive analytics tools as part of its cloud computing 

toolkit (Amazon, 2017). In 2015, telecommunications company Cisco released a white paper on 

the size and trajectory of global cloud computing capacity between 2015 and 2020. According to 

their estimates, global cloud IP traffic will grow at a compound annual growth rate (CAGR) of 

30 percent between 2015 and 2020 (Cisco, 2015). They forecast annual global cloud traffic to 

reach 14.1 zetabytes (ZB) (1.2 ZB per month), by 2020, up from 3.9 ZB in 2015.1 

 

Market spending on cloud computing services is projected to reach more than $200 billion by 

2020, up from an estimated $122 billion in 2017 (IDC, 2016). Approximately 90 percent of 

global enterprises will use some type of cloud-based technology by 2020 (EIU, 2016). Despite 

the forecasted growth, a 2016 study from the Economist Intelligence Unit found that cloud 

computing, measured by industry adoption rates, is really only just beginning. The study 

surveyed leaders from five major industries (banking, retail, manufacturing, healthcare, 

education), and found that an average of only 7 percent of respondents felt that cloud computing 

played a ñpervasive roleò (Economist Intelligence Unit, 2016:3). In addition to varied rates of 

adoption, concerns over privacy, security, and flexibility remain. Companies deciding to adopt 

one cloud platform may find it costly or difficult to transfer their information to another provider 

(Economist, 2015). Improved regulation that allows benefits companies and consumers to move 

                                                 
1 1 zetabyte is equal to 1021 bytes. A byte is a unit of digital information, traditionally consisting of 8 bits. 8 bits 

represents the number of bits required to encode and save a single character of text in a computer. 
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data between different providers may enhance adoption rates. The growth of the cloud, both in 

terms of data management and market size is undeniable, but important challenges remain. 

 

The Shifting Investment Landscape 
 

AI advancement has traditionally been the product of universities and corporate research and 

development labs (e.g. IBM). Over the last few years, Silicon Valley has moved major 

investments into AI. There is a growing appreciation and recognition of the social benefits and 

commercial value of narrow AI technologies, prompting interest from Silicon Valley and private 

start-ups. Major technology companies including Facebook, Google, and Microsoft have hired 

some of the best minds in AI and invested heavily (Albergotti, 2014; Regalado, 2014). One 

reason technology companies have been able to attract the top talent away from research 

universities is in addition to comfortable compensation packages, these companies are sitting on 

vast amounts of user generated data increasingly essential to AI development. This data is not 

publicly available nor can many research centers and universities compete with its size and 

breadth. 

 

Private investment in AI has grown commensurate with the results and attention. One market 

research firm estimated private funding for AI (excluding robotics) to have grown from $589 

million in 2012 to over $5 billion in 2016 (CB Insights, 2017). There may be as many as 2,600 

different companies operating in the AI sector as of 2016, with over 170 having taken off in 

Silicon Valley since 2014 (Byrnes, 2016). The robotics market alone could be worth close to 

$135 billion by 2019 (Waters & Bradshaw, 2016). 

 

 Information and Communication Technology Access 
 

Information and communication technology access is another important indicator of AI. ICT 

penetration rates, particularly mobile broadband, serve as an important baseline to justify 

investment into AI and give some indication of the technological depth of a society. Many AI 

applications over the near-term will rely on smart phones as a service delivery mechanism. The 

number of smart phones in the world is expected to grow, reaching over 6 billion by 2020 with 

much of the growth coming from the developing world. Today there are an estimated 3.2 billion 

(Ericsson, 2016) The 2016 annual report by the International Telecommunications Union (ITU) 

provides a current snapshot of global ICT connectivity:  

 

¶ Globally, 95% of the population lives in an area covered by a cellular network; 84% of 

the population lives in an area with a mobile broadband network (3G or above), but only 

67% of the global rural population has access to mobile broadband regularly. 

¶ An estimated 3.9 billion people are not using the internet regularly, roughly 53% of the 

total. Internet penetration rates in developed countries are up at around 81%, while in the 

developing world they average approximately 41%, but only 15% in the least developed 

countries 

¶ An estimated 1 billion households have internet access: 230 million in China, 60 million 

in India, and 20 million across the 48 least developed countries. 



15 

Pardee Center: Modeling AI 

As we can see from the figures above, much of the developed world is covered by internet access 

and mobile broadband, but a general lack of access constrains the poorest parts of the world. 

 

Together, the preceding list comprises important proximate drivers of AI development. In 

addition, the spread of AI technologies for commercial and personal use will be contingent on 

policymaking and industry adoption. Transparent policymaking is necessary to define the rules 

of AI and its use, but also to justify adoption and investment. How rapidly the business industry 

can integrate emerging AI technologies into their work cycle will further hinder or hamper 

adoption. With these trends and important drivers in mind, we shift to thinking about 

ñintelligenceò and how we might evaluate or assess generally intelligent machines. 

Measuring and Evaluating Artificial Intelligence 
 

There is minimal doubt that Artificial Intelligence is a ñsuccessfulò field; new technologies and 

applications are emerging regularly (Hernandez-Orallo, 2017:117). Almost all recent progress 

has been restricted to narrow AI sectors; the development of general AI machines remains a 

distant goal rather than an imminent reality. Scientists and developers in the field remain 

confident that general AI will be developed, though there is significant uncertainty as to the 

timeline. 

 

Evaluating AI requires some basic consensus around standard benchmarks of progress and an 

understanding of what qualifies as general intelligence, at least from a definitional perspective. 

As we will see, there exists a great many definitions of ñintelligence,ò a growing number of tests 

and evaluation techniques used to assess machine intelligence, and some dispute around how we 

can (or should) accurately measure general intelligence. 

 

Early researchers of AI were focused on developing generally applicable machines, that is those 

capable of solving a variety of problems otherwise requiring ñintelligenceò (Newell et al., 1959). 

Some researchers tried to design programs that would be capable of solving questions commonly 

found on human IQ tests, such as the ANALOGY program which sought to answer geometric-

analogy questions frequently found on intelligence tests (Evans, 1964). Ultimately however, the 

creation of generally intelligent machines was far more difficult than many predicted, leading to 

a stagnation in AI research in the 1960s and the 1970s. The pace of research also slowed as a 

result of what has become known as the ñAI effect,ò or the idea that as soon as AI successfully 

solves a problem, the technology is reduced to its basic elements by critics and thus is no longer 

considered intelligent (McCorduck, 2004). For instance, when Deep Blue beat chess champion 

Gary Kasparov in 1997, critics claimed that the machine resorted to brute force tactics, which 

were simply a function of computing power rather than a true demonstration of intelligence 

(McCorduck, 2004, p. 33). The result of the ñAI effectò is that the standards for true machine 

intelligence keep retreating. These difficulties helped in part to shift the field toward the 

development of narrow technologies capable of achieving measurable and practical results 

(Hernández-Orallo, 2017:120). 
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Evaluating Narrow AI 
 

The growth of narrow AI technology means that most AI is now accessed according to a ñtask-

oriented evaluation,ò (Hernández-Orallo, 2017: 135) that is, according to its relative performance 

along task-specific, measurable outcomes. Today all of the benchmarks along narrow the AI 

categories discussed below measure performance according the completion of a specific task:  

 

¶ the ability to translate text from one language to the other, or 

¶  identify a cat from a series of photos, or 

¶  accurately respond to specific questions from a human user 

Progress along these many different evaluations shows that AI is becoming more useful, but 

doesnôt necessary suggest that AI is becoming more intelligent. Measuring and evaluating 

artificial intelligence requires some classification and understanding of major technologies that 

are shaping the field. The AI field is diverse and rapidly expanding and resists simple 

classification. Pulling together various threads from a wide-range of research, we have identified 

six ñcategoriesò of AI technology generating new breakthroughs: computer vision, machine 

learning, natural language processing, robotics, the ñInternet of Things,ò and reasoning/decision-

making. These six include both foundational AI technologies as well as important technologies 

emanating from them. While items on this list are neither exhaustive nor exclusive (See Box 1), 

they provide a framework to begin building the representation of AI in IFs. 

 
 

Table 2. Technologies Comprising the Narrow AI Representation in IFs 

Type Definition  Applications 

Computer Vision Ability of computers to identify objects, 

scenes, activities in images. 

Medical imaging, facial recognition, retail and 

sales. 

Machine Learning Ability of computers to improve 

performance through exposure to data 

without pre-programmed instructions. 

Any activity that generates substantial data. 

Examples include: fraud detection, inventory 

management, healthcare, oil & gas. 

Natural Language 

Processing 

Ability of computers to manipulate, write 

and process language, as well as interact 

with humans through language. 

Analyzing customer feedback, automating writing 

of repetitive information, identifying spam, 

information extraction and summarization. 

Robotics The branch of technology specializing in 

design and construction of robots.  

Unmanned aerial vehicles, cobots, consumer 

products and toys, select services, manufacturing  

Internet of 

Things/Optimization 

Networking of physical objects through the 

use of embedded sensors, actuators, and 

other devices that can collect or transmit 

information about the objects. Requires 

collecting data, networking that data, and 

then acting on the information. 

Two main applications: anomaly detection and 

optimization. Specific applications in energy 

supply and demand, insurance industry and 

optimization of premiums, healthcare, public 

sector management.  

Reasoning, 

Planning, & 

Decisionmaking 

This represents an area of AI research 

concerned with developing ability of 

machines to reason, plan, and develop 

decision-making capacity. We represent it 

as a general ñspillover categoryò of 

machine reasoning, an essential element of 

general AI. 

Limited modern applications and development. 

Some basic reasoning technology has been used 

to assist in proving mathematical theorems. 
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Box 1. 

 
There are many sub-disciplines and areas of study within the AI field, many more than could be effectively 

captured in any modeling effort. The 2016 Association for Artificial Intelligence annual conference alone 

accepted submissions to over 30 different AI subfields. The six main categories of technology we have 

represented within narrow AI cover both foundational AI technologies (computer vision, machine learning, 

natural language processing, reasoning), as well as important technologies that are emanating from the field 

(robotics, internet of things). These areas are currently receiving significant attention, deep financial investment, 

and/or are necessary for advancing the spectrum towards general AI.  

 

We recognize these categories are neither exclusive nor exhaustive. To outline the diversity of research and 

development currently happening within the field, Table 3 below depicts other important areas of AI 

technological development. Included in this list are the main disciplines within AI Journal, one of the leading 

publications in the field (Hernandez-Orallo, 2017:148). 

 
Table 3 Major Areas of AI Research 

AI Subfield Definition  

Crowdsourcing and 

Human Computation 

Algorithms that allow autonomous systems to work collaboratively with 

other systems and humans. 

Algorithmic Game 

Theory 

Research focused around the economic and social computing dimensions of 

AI . 

Neuromorphic 

Computing 

Mimic biological neural networks to improve hardware efficiency and 

robustness of computing systems. 

Automated (Deductive 

Reasoning) 

Area of computer science dedicated to understanding different aspects of 

reasoning to produce computers that are capable of reasoning completely. 

Constraint Processing Refers to the process of finding solutions amidst a set of constraints that 

impose conditions that certain variables must satisfy.  

Knowledge 

Representation 

Representing real world information in forms that a computer system can 

use to solve complex tasks. 

Multi -agent Systems Computer system composed of multiple, interacting, intelligent agents 

within one environment. 

Planning and Theories of 

Action 

Developing machines capable of ñunderstanding what to do nextò in the 

context of unpredictable and dynamic environments, often in real-time. 

Commonsense Reasoning Simulating human ability to make presumptions, inferences, and 

understanding about ordinary situations that they encounter on a day to day 

basis. 

Reasoning Under 

Uncertainty 

Concerned with the development of systems capable of reasoning under 

uncertainty; Estimate uncertain representations of the world in ways 

machines can ñlearn from.ò 
 

 

 

Benchmarking Progress in Narrow AI 
 

In this section, we outline recent progress along the categories of narrow technology outlined 

above. Given the lack of standardized data on AI technology and development across time, these 

benchmarks are pulled from a variety of sources, including (but not limited to), media reports, 

market research estimates, government analyses, journal articles, and other independent analyses 

of the field. Table 4 provides a summary of progress along the identified categories of narrow AI 

technology and an initial AI index score (from 0-10) for each estimated by the authors. A 

justification for the initial score is elaborated in text below the table. 
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Table 4. Benchmarking Progress in Narrow AI Technologies 

Technology Performance Benchmarks 2015 

Index 

Score 

Machine 

Learning 
¶ 1997: IBM Deep Blue defeats Gary Kasparov, a Grandmaster, in a game of 

Chess. 

¶ 2011: IBM Watson defeats Jeopardy! champion. In the lead up to the 

contest, between December 2007 and January 2010, the precision of 

Watsonôs responses more than doubled. Precision measures the percentage 

of questions the system gets right relative to those it chooses to answer. In 

December of 2007, Watson answered 100 percent of Jeopardy! style 

questions with only 30 percent accuracy. By May of 2008, accuracy of 

response improved to 46 percent, and by August of 2008 it was close to 53 

percent. A year later in October of 2009 accuracy (with 100 percent of 

questions answered) hovered around 67 percent, twice the level in 2007. 
¶ 2008-2012: NIST Machine Translation Scores. Chinese to English 

translation accuracy (as compared with a human translation) improved 28-

34% between 2008-2012. Arabic to English accuracy scores improved from 

41% to 45%. Less widely spoken languages scored less well: Dari to 

English 13% (2012), Farsi to English 19% (2012), Korean to English 13.6% 

(2012). 

¶ 2013: First AI software passes the Captcha test. Captcha is a commonly 

used authentication test designed to distinguish humans and computers. 

Captcha is considered broken if a computer is able to solve it one percent of 

the time; this AI software solved it 90 percent of the time. 

3 

Computer 

Vision 
¶ 2010-2015: Stanford AI ImageNet competition. Image classification has 

improved by a factor of 4 over 5 years. Error rates fell from 28.2% to 6.7% 

over that time period. 

¶ In the same competition, object localization error rates fell from 45% in 

2011 to 11% in 2015. 

¶ 2012: Google releases the ñCat Paper.ò Produced a machine capable of 

learning from unlabeled data to correctly identify photos containing a cat. 

¶ 2014: Facebookôs ñDeepFaceò team publishes results that claim its facial 

recognition software recognizes faces with 97% accuracy. 

¶ 2015: Microsoft image recognition algorithms published an error rate of 

4.94%, surpassing the human error threshold of 5.1% and down from error 

rates of 20-30% in the early 2000ôs. 

3 

Natural 

Language 

Processing 

¶ 2012- 2014: Siriôs ability to answer questions correctly improved from an 

estimated 75% to 82%. Over the same time period, Google Now response 

accuracy improved from 61% to 84%. Siriôs ability to interpret a question 

when heard correctly improved from 88% to 96%. Google Now similarly 

improved from 81% to 93%. 

¶ 2015: Baidu released its DeepSpeech 2 program that can recognize English 

and Mandarin better than humans and achieves a character error rate of 

5.81%. Represents a reduction in error rates by 43% relative to the first 

generation of the software. 

¶ 2016: Microsoft switchboard word transcription error rates have dropped 

from between 20-30% around 2000, to a reported 5.9% in 2016. 

2 

Robotics ¶ 1942: Isaac Asimov publishes the Three Laws of Robotics.  1 
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¶ 1954: Patent for ñUnimate,ò the first industrial robot filed. Unimate worked 

on a General Motors assembly beginning in 1961. 

¶ 1969: Robot vision for mobile robot guidance first demonstrated at Stanford 

¶ 1970: Hitachi develops the first robot capable of assembling objects from 

assembly plan drawings.  

¶ 1980: First use of machine vision in robotics demonstrated at the University 

of Rhode Island in the U.S. 

¶ 1990: Manufacturers begin to implement network capabilities among 

robots. 

¶ 2002: Reis Robotics patents technology permitting among the first direct 

interactions between humans and robots. Robotics industry crosses $1 

billion.  

¶ 2003: Mars Rover first deployed heading to the planet Mars. Mars Rover 

missions continue through the present day.  

¶ 2004: First DARPA Grand Challenge. Goal: design an autonomous car 

capable of completing 150 mile route through the Mojave Desert in the U.S. 

No cars completed the route; an entry from Carnegie Mellon went the 

farthest, completing roughly 7.3 miles. 

¶ 2005: Second DARPA Grand challenge. Design a driverless car capable of 

completing a 132 mile off-road course in California. Of the 23 finalists, 5 

vehicles successfully completed the course, the fastest in just under seven 

hours. 

¶ 2007: Third DARPA Grand Challenge. Design a self-driving car capable of 

completing an urban, 60-mile course in less than six hours. Required 

vehicles that could obey traffic laws and make decisions in real time. Six 

teams successfully completed the course, the fastest in just over four hours. 

¶ 2015: Carmaker Tesla releases its first generation Autopilot technology, 

part of its suite of self-driving technology. Autopilot allows Tesla to 

automatically steer within lanes, change lanes, manage speed, and parallel 

park on command. 

¶ 2015: The University of Michigan opens MCity, a testing center for 

autonomous vehicles. Represents the first major collaboration between 

private industry, government and academia on the development of 

autonomous vehicles. 

¶ 2015: BCG estimates global robotics manufacturing installations to grow 

10% through 2025, reaching an estimated 5 million globally. Yet even by 

2025, robotics may only account for 25% of all manufacturing tasks 

globally. 

Internet of 

Things 
¶ 1990: There are an estimated 100,000 internet hosts across the worldwide 

web. 

¶ 2000: More than 200 million devices connected to the IoT 

¶ 2012: A botnet known as ñCarnabotò performed an internet census and 

counted approximately 1.3 billion devices connected to the worldwide web. 

¶ 2014: The number of devices communicating with one another surpassed 

the number of people communicating with one another. 

¶ 2015: over 1.4 billion smart phones were shipped and by 2020 we will 

have 6.1 billion smartphone users. 

¶ 2020: There could be anywhere from 20-50 billion devices connected to the 

IoT 

2 
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Reasoning, 

Planning, and 

Decisionmaking 

¶ Spillover category designed to capture progress towards reasoning, 

planning, and decisionmaking, key elements of general intelligence. 

¶ There are very minimal current applications in this technology. Automated 

Reasoning, for instance, has been used in the formal verification of 

mathematical proofs and the formalization of mathematics. 

1 

 

 

Thinking About Measuring General AI 
 

There are many, varying, conceptual measurements for general artificial intelligence (AGI). One 

example is the ñcoffee test,ò under which a machine should be able to enter an ordinary and 

unfamiliar human home, find the kitchen, and make a cup of coffee (Moon, 2007). Along these 

lines, others have proposed that a generally intelligent machine should be able to enroll, take 

classes, and obtain a degree like many other college students (Goertzel, 2012). Nils Nilsson, a 

Professor of AI at Stanford, has taken the definition a step further, proposing an ñemployment 

test,ò whereby a truly intelligent machine should be able to complete almost all of the ordinary 

tasks humans regularly complete at their place of employment (Muehlhauser, 2013).  

 

These definitions of AGI have similar underlying themes: they require that machines be able to 

respond to different tasks under varying conditions. These differing tests help us arrive at a 

working definition of general-purpose AI systems, proposed by Hernandez-Orallo, (2017:146): 

 

AGI must do a range of tasks it has never seen and not prepared for beforehand. 

 

Having defined AGI, we must now consider measurement techniques. The Turing Test, first 

proposed by English Mathematician Alan Turing in 1950 has evolved into a simple test of 

intelligence. The Turing Test measures the ability of machines to exhibit intelligent behavior 

indistinguishable from that of humans. If a machine can fool a human into thinking it is human, 

then that machine has passed the Turing Test. Some have identified it as ña simple test of 

intelligenceò (French, 2000:115), or a goal of AI (Ginsberg, 1993:9). An example of the 

enduring appeal of the Turing Test, The Loebner Prize for Artificial Intelligence, offers $100,000 

to the chatterbot deemed to be most human-like according to a panel of judges. The prize has 

been offered annually since 1991. 
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Box 2. 

 
Some researchers of AI have proposed a suite of tests for which to analyze general intelligence. Adams et al 

(2012) identified ñhigh-level competency areasò that machines would have to depict across a number of 

scenarios, including: video-game learning, preschool learning, reading comprehension story comprehension, and 

the Wozniak test (walk into a home and make a cup of coffee) (synthesized from Hernandez-Orallo, 2017:148). 

 

Core competency areas as identified by Adams et al (2012) and reproduced in Hernandez-Orallo (2017) are seen 

in the table below: 

 
Table 5. Core Competencies of General AI 

Perception Memory 

Attention Social interaction 

Planning Motivation 

Actuation Reasoning 

Communication Learning 

Emotion Modelling self/other 

Building/creation Use of quantities 

  

 
While such a set of complex assessments may never be possible across all of the identified competencies or 

scenarios, comprehensive analysis could include some combination of these different evaluation strategies. 

 

 

More recent research has argued against the Turing Test as a sufficient measure for general 

intelligence. Hernandez-Orallo (2017:129-130), summarizes its shortcomings succinctly. He 

points out that many non-intelligent machines can be trained and designed to fool judges, 

without necessarily exhibiting true intelligence. The results of the Turing can differ dramatically 

based on indications, protocols, personalities, and intelligence of the people involved, both the 

judges and participants. Finally, the Turing Test asks machines to imitate humans, which raises 

questions about how representative the imitation is of the entire human race. 

 

Instead of focusing on task-specific evaluations, AGI evaluation should move towards ñfeature-

oriented evaluation.ò Such an evaluation would be based on a profile of behavioral features and 

personality traits of the machine, rather than its ability to perform a discrete task (Hernandez-

Orallo, 2016:146). This type of evaluation builds on performance along narrow task areas and 

towards a maximalist view of general intelligence. The type and style of this evaluation is 

debated and ill-defined. Some have proposed the idea of a machine cognitive decathlon 

(Hernández Orallo, 2017; Vere, 1992), or a test of mental flexibility. Feature-oriented evaluation 

is complicated by non-specific questions around defining and measuring ñpersonality.ò Feature-

oriented evaluations remains a nascent idea and topic, combining both measurements and 

evaluations of cognitive ability and personality (Hernandez-Orallo, 2017: 150), but it surely must 

be the direction the field moves toward in an assessment of AGI. 
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International Futures: Representing AI 
 

We now turn to a discussion of the construction and 

conceptualization of the AI indices in IFs. 

Understanding the IFs platform is important for 

understanding how the AI representation is integrated 

within the tool and how it could be used to model 

impacts of AI. International Futures (IFs) is an open-

source, quantitative modeling tool for thinking about 

long-term futures. Building on 3,600 historical data 

series, IFs helps users understand historical patterns, 

explore the current path of development and the 

trajectory we appear to be on (or Current Path), and 

shape thinking about long-term futures. To do this, IFs 

leverages relationships across hundreds of variables 

from twelve dynamic, interconnected systems of human 

development. Figure 5 depicts the major sub-modules 

of the IFs system. The linkages shown are illustrative 

rather than comprehensive, each link is comprised of 

hundreds of variables. The IFs Current Path represents 

expectations for how development will unfold across 

each of these systems absent significant alteration or 

intervention, (think drastic policy change, man-made or 

natural disasters, conflict, or technological 

discontinuities). The Current Path provides a necessary 

reference point for alternative scenario analysis. It is 

itself a dynamic forecast, driven by the variables and 

relationships built into the model. Many of the 

assumptions in the model can be modified by users to 

better reflect their own understanding of how these 

systems are developing and unfolding across time. 

 

 

 

AI Variables in IFs 
 

The AI forecasting capability in IFs is a set of indices that estimates and forecasts global 

development of artificial intelligence. At present it does not contain forward linkages, a task we 

discuss in later sections of this paper. We have added several variables to the IFs platform to 

develop the modeling capability. The AI representation forecasts progress along narrow, general, 

and super artificial intelligence consistent with the conceptualization discussed earlier.  

 

The first variable added to IFs, AITASK, estimates and forecasts technological progress along 

each of the six areas of narrow AI we defined earlier in the paper: computer vision, machine 

learning, natural language processing, Internet of Things, robotics, and reasoning. AITASK is 

Figure 5. Representation of the IFs Model 
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represented as an index scaled from 0 to 10, where 0 represents no development, and 10 

represents full or complete development (see below for a more in depth discussion of our 

thinking along these lines). The index score along each of these narrow technologies is initialized 

in 2015 (IFs base year).  

 

The second variable added to IFs AITASKGR, represents the annual growth rate along each of 

these technologies, and saturates on approach to 10 for each. Each narrow technology grows at a 

different pace, estimated by the authors using inputs like: performance benchmarks, complexity 

of each technology, investment, and levels of research. AITASK Reasoning grows at the slowest 

pace of the AITASK indices. Progress along this index represents the movement towards 

machines capable of reasoning completely, complex decision-making, and provided with a sense 

of purpose and awareness of the world around them. Any movement from narrow to general AI 

in the IFs index is implicitly constrained by the pace of AITASK Reasoning, regardless of 

progress among the other areas of narrow AI development. 

 

Finally, we have also added AIMACHIQ, a variable which represents the movement from narrow 

AI to general and superintelligent AI. AIMACHIQ is scaled as an index representing machine IQ 

scores, roughly corresponding with human-level IQ scores. In the Current Path, the movement 

from narrow to general AI occurs when an index score of 10 is achieved for each of the narrow 

technologies denominated under AITASK, except for AITASK Reasoning, which is at 5. This 

transition is reflected on AIMACHIQ at an index score of around 60. At that point, the index 

forecasts general AI will have been achieved, though a score of 60 corresponds to machines with 

the equivalent of low-level human intelligence. AIMACHIQ then grows algorithmically as 

AITASK Reasoning continues to improve, saturating toward an index score of 200 as AITASK 

Reasoning reaches 10. An AIMACHIQ score of between 180 and 200 represents machine 

superintelligence, as this would correspond with some of the highest reported IQ scores among 

humans.2 

 

In addition to each of the variables, we have added parameters described in Table 6 to each of 

the AI variables. Parameters allow users to exogenously adjust the AI representation with 

maximum flexibility to bring the forecast in line with users own expectations of AI development. 

                                                 
2 Marilyn Vos Savant has the highest living recorded IQ today with a score of 228. Renowned physicist Stephen 

Hawking has a recorded IQ of around 160. 
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Table 6. AI Variables Added to IFs 

  Definition Scale 

Variables 

AITASK  Index measuring developmental progress of six areas of 

narrow AI technology: machine learning, computer vision, 

natural language processing, IoT, robotics, and machine 

reasoning. IFs forecasts development along each of these 

different narrow technologies. 

1-10  

 

(for each 

category of 

narrow 

technology) 

AITASKGR Represents estimated, differential, annual growth rates of 

each narrow technology. 

 

AIMACHIQ Index measuring the level and capacity of machine 

intelligence. Index scores correspond approximately to 

human-level IQ scores and intelligence. 

1-200 

Parameters 

aitaskm Multiplicative parameter allowing users to adjust the 

growth of task-specific technologies. Users can accelerate 

or slow this parameter by up to 1,000 percent in either 

direction. 

Set to 1 in the 

Current Path 

aimachiqm Multiplicative parameter allowing users to adjust the 

growth rate of general and superintelligent AI. Users can 

accelerate or slow this parameter by up to 1,000 percent in 

either direction. 

Set to 1 in the 

Current Path 

 

 

There is no comprehensive, standardized dataset or series of benchmarks measuring the growth 

of artificial intelligence from which we can draw. There is also much debate and controversy 

over the pace of development and uncertainty around what the future of the field could look like. 

With that uncertainty in mind, the next section outlines the thinking behind the indices and 

growth rates along the six categories of narrow AI technology. 

 

Initializing AITASK: Rapid Progress over the Past 5 Years  
 

Many of the notable performance benchmarks outlined in Table 4 have occurred recently. If we 

were constructing this AI forecast five to ten years ago each of these technologies would have 

been initialized with a score of one. New breakthroughs in Deep Learning technology, a 

foundational element of many of the technologies above, including computer vision, machine 

learning, and natural language processing, has been responsible for much of the progress. Deep 

Learning and artificial neural network technology has been around since the 1980s and 1990s, 

but operated largely at the fringes of main AI research.  

 

Today however, the results produced through Deep Learning have come about because 

researchers have the means to store, manipulate, and utilize the vast amount of data produced by 

an increasingly digital world. The result has been an explosion of successful technologies. 

Stanfordôs ImageNet competition began in 2010. Apple iPhoneôs automated assistant Siri was 

acquired in 2010 and first introduced as part of the iPhone product line in 2011, Google 

responded by releasing Google Now in 2012. Google Brain, the project at Google centered on 

Deep Learning, opened in 2012. According to a company spokesperson, in 2012 Google was 

working on two Deep Learning projects. Today it is working on over 1,000 (Parloff, 2016). In 

2016, Google overhauled Google Translate using artificial neural networks, showing significant 

results in both accuracy and fluency of translation. These improvements were the result of a 
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project that began in 2011. In 2013, Facebook hired Yann LeCun, a leading Deep Learning 

scientist, to run its new AI lab. In 2016 Microsoft consolidated much of its AI portfolio into an 

umbrella AI and Research Group, which brings together more than 5,000 computer scientists 

working on AI-based projects (Microsoft, 2016). According to CB Insights, a market analytics 

firm, in the second quarter of 2016 nearly 121 rounds of equity fundraising were held for AI-

based start-ups, compared with just 20 in 2011 (Parloff, 2016). 

 

Initializing AITASK: Understanding the Shortcomings of Todayôs Technology 
 

Yet, despite some referring to the recent period as the ñthe Great AI Awakening,ò (Lewis-kraus, 

2016), the functionality of AI remains very limited. As AI pioneer and Director of Baidu AI, 

Andrew Ng, points out, almost all AI technologies today operate on a simple premise: data input 

is used to generate a simple response (Ng, 2016). In this section we look at the current 

shortcomings of each AI technology to provide context for and justify the initial indices score. 

 

Machine Learning 

 

AITASK Machine Learning 2015 Index Score: 3 

 

New algorithms that improve both the accuracy and speed of machine learning have been fueled 

by new technologies like Deep Learning and Reinforcement Learning. Corresponding 

performance in task-specific activities reflects that improvement (reflected in Table 4). 

Additionally, the market for machine learning technology was estimated at around $613 million 

in 2015, forecast to grow to 3.7 billion by 2021 (MarketsandMarkets, 2016a), suggesting these 

improvements are catalyzing interest and funding. Yet many improvements have not necessarily 

been uniform. For instance, machine translation accuracy is much lower among less commonly 

spoken languages. In 2012, the accuracy of Korean-to-English translation or Farsi-to-English 

translation hovered between only 13 and 19 percent, while it had improved to over 35 percent for 

Arabic and Chinese translations. Machine learning technology today remains dependent on 

massive volumes of data to ñtrainò machines. Humans must be involved in the production, 

manipulation, and management of the data. Examples of common applications of machine 

learning are listed in Table 7. Each involves a simple binary output and massive data input. 

While each is a simple task for a human, as we will see below, machines can be easily fooled. 

 

 
Table 7. Examples of Machine Learning. 

Input A  Output B Application  

Picture Does the picture contain faces? (0,1) Photo tagging 

Loan application Will the user repay the loan (0,1) Finances 

Add and user information Will this user click on the ad? (0,1) Ad-based targeting 

 

  

A result of these benchmarks, we have initialized AITASK Machine Learning at 3 in 2015. A 

machine learning index score of 10 represents perfect machine learning capabilities. To achieve 

an index score of 10, machine learning would be capable of learning almost any task as well as a 

human, with the ability to produce complex, sophisticated output. Additionally, machine learning 
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approaching 10 would contain sophisticated algorithms such that it is capable of learning from 

far smaller volumes of data than todayôs models. That technology might even be able to 

manipulate and absorb data without human input. 

 

Computer Vision 

 

AITASK Computer Vision 2015 Index Score: 3 

 

Another area which has seen rapid improvement in the last five years is computer vision. The AI 

ImageNet competition, hosted by Stanford, has reported significant improvement in image 

identification, localization, and object detection between 2011 and 2015 (see Table 4). The 

market for computer vision is estimated to grow from $5.7 billion in 2014 to over $48 billion in 

2022 (Tractica, 2016).  

 

But it still remains very easy to fool computers into seeing something that isnôt there, or 

misclassifying objects completely erroneously. Many of the tasks relating completed by 

computer vision are extremely basic for humans. There remain important differences between 

machine and human vision that scientists donôt fully understand and thus cannot build in a 

machine. Machines can still be easily fooled in ways that human vision wouldnôt be. A 2015 

paper found that it was quite easy to produce images that humans would immediately identify as 

gibberish, only for a computer to classify them as objects with 99 percent confidence (Nguyen et 

al., 2015). Another similar study found that changing images in ways almost imperceptible to 

humans caused machines to misclassify objects entirely, for instance classifying a lion as a 

library (Szegedy et al., 2013). More recently, researchers in France and Switzerland showed 

small, almost imperceptible changes to an image could cause computers to mistake a squirrel for 

a fox, or a coffee pot for a macaw (Moosavi-Dezfooli et al., 2016; Rutkin, 2017). 

 

These challenges stem from fundamental differences in the way that humans and computers 

learn to ñseeò images. Children in school learning to recognize numbers eventually learn to 

recognize common characteristics of each after seeing many different examples. Ultimately they 

come to recognize numbers even if the way the numbers are written is new to them. Computers 

learn to see by being fed millions of images of labeled data. It picks up the features that enable it 

to correctly identify the object of interest. But, machines, unlike humans, cannot see the whole 

picture. They learn from the pixels in a photo, while learning how tell different pixels apart. So, 

imperceptible changes in the pixel composition, alterations that stop short of changing the image 

in the photo, could fool the machine into thinking the photo is something it isnôt (Rutkin, 2017).     

 

Given the rapid progress in image and object identification, but accepting the significant 

limitations, we initialize AITASK Computer Vision at an index score of 3 in 2015. A computer 

vision index score of 10 would reflect computers with vision on par with humans, with the 

ability to distinguish, localize, differentiate without being easily fooled. Building machines with 

vision equivalent to that of a human also requires elements of reasoning to be able to identify, 

process, and understand the world they ñsee.ò 
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Natural Language Processing 

 

AITASK Natural Language Processing 2015 Index Score: 2 

 

Natural language processing has improved both in terms of its ability to answer human generated 

inquiries and also its ability to decipher and translate between different human languages. 

Investment and attention have both increased; the market for natural language processing 

products is expected to grow from $7.6 billion in 2016 to $16 billion by 2021 

(MarketsandMarkets, 2016b). 

 

Arguably however, language remains one of the final frontiers of human intelligence. Machines 

capable of a full suite of natural language capabilities is still more of a distant dream than a 

short-term reality. Machines still donôt ñunderstandò language. Their ability to produce accurate, 

automated translation from spoken word in real time is limited by challenges that humans 

navigate with ease. Individual sounds are often not pronounced in isolation, in fluent human 

conversation they come in a constant stream. Machines still have difficulty understanding 

nuanced vocabulary, children and elderly speakers, or competing with significant background 

noise (The Economist, 2017).  

 

Researchers are also interested in producing machines capable of speech generation and 

conversation. The use of artificial neural network technology has helped researchers develop 

machines capable of producing more fluent sounding speech, but speech generation represents a 

whole new set of complex challenges. For instance, prosody, the modulation of speed, pitch, and 

volume to convey meaning, is an important component of human speech and interaction, which 

computers lack. Developing computers able to place stress on the correct words or parts of a 

sentence to convey meaning is incredibly difficult, and likely only ñ50 percent solvedò by one 

estimate (The Economist, 2017). Additionally, fully fluent conversation is built around shared 

knowledge and an understanding of the world, something that machines lack. In theory, 

conversation between humans and machines represents a series of linked steps: speech 

recognition, synthesis, analysis of syntax and semantics, understanding of context, and dialogue, 

as well as common-sense and practical real-world understanding. Scientists still do not fully 

understand how the human brain pulls all of these disparate threads together to generate 

conversation; doing so in machines is a long-term task (The Economist, 2017). 

 

NLP is initialized at an index score of ñ2ò in 2015. Fully automated machine transcription and 

translation remains a distant dream. Language is often considered the defining frontier of human 

intelligence. The Winograd Schema challenge, designed specifically to test how well machines 

understand and interpret language, was first held in 2016. The best entry scored a 58 percent, a 

result described as a ñbit better than randomò (Ackerman, 2016).  According to some, machine 

transcription, translation, or language generation will never replace the benefits of understanding 

language and human-led translation. When people learn new words and phrase, they are not just 

learning the literal semantics or syntax of the individual words, they also learn cultural values 

and norms (Lewis-kraus, 2016). 

 

A score of 10 along the natural language processing index represents machines capable of fully 

automated transcription and translation with close to 95 percent accuracy (roughly human level). 
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A score of 10 represents machines capable of hearing, understanding, synthesizing, and 

generating language to participate in complex conversations on a variety of topics for which it 

has not necessarily been trained.   

 

Internet of Things 

 

AITASK Internet of Things 2015 Index Score: 2 

 

The growth of the Internet of Things has been fueled by rising internet connectivity and mobile 

technology penetration. Smart phones in particular are essential, as a service delivery and data 

collection mechanism and will remain one of the primary interfaces through which users interact 

with the IoT. The IoT has been and is forecast to continue growing exponentially, by some 

estimates there could be as many as 50 billion devices connected to the IoT by around 2020. 

 
Figure 6. Number of Devices Connected to the Internet of Things vs. Size of the Population 

Source: Howard, 2015 

 

Despite the sheer growth in the number of devices connected to the IoT, the technology is still 

very much in its infancy. The rules and norms that govern the use of and privacy around IoT-

generated data remain ill-defined and opaque. Maximizing the benefits of IoT data requires 

interoperability between different IoT systems, today the vast majority of these systems are not 

interoperable. Finally, most data generated by the IoT today is used for basic tasks like anomaly 

detection and control, rather than for service optimization or predictive analytics, itôs most useful 

function (Manyika et al, 2015.) 

 

For these reasons, the IoT index is initialized at 2 in 2015, but is forecast to grow rapidly given 

expected exponential growth in the number of connected devices. An index score of 10 

represents a world where IoT data is protected and privacy concerns assuaged. Data produced is 

harnessed and analyzed to maximize efficiency on a broad social level. Fully smart cities and 
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smart homes are the norm in most major developed urban areas. Automated transportation has 

become widespread not only as a result of the production of these cars, but also because cities are 

investing in the sensors and technology needed to produce the smart infrastructure that supports 

automated driving. Smart infrastructure could include sensors embedded in the roadway that 

manages the flow and speed of traffic, sensors at intersections to reduce accidents and 

congestion, and smart lanes capable of charging cars as they drive (Manyika et al., 2013). 

According to a common definition of ñsmartò technology, global spending on smart city 

technology could cumulatively reach $41 trillion over the next 20 years (Pattani, 2016).  

 

Robotics 

 

AITASK Robotics 2015 Index Score: 2 

 

Robots are already well-established in a number of fields, particularly manufacturing. According 

to a 2015 report by Boston Consulting Group, robots accomplish close to 10 percent of tasks in 

the manufacturing industry today. Between 2010 and 2015, industrial robotics sales increased by 

a compound growth rate of around 16 percent annually, by 2015 there were 254,000 industrial 

robots sold (International Federation of Robotics, 2016).  

 

The field of robotics is initialized at an index of 1 in 2015. This might seem surprising, given the 

large swaths of manufacturing and light industry jobs already replaced by robots (Frey et al., 

2016; Frey and Osborne, 2013; Schwab and Samans, 2016a). The functionality of most modern 

robots, however, remains limited. Robots today can perform a significant number of basic tasks 

that humans no longer want to do (particularly in manufacturing), or a few select tasks that 

humans cannot perform, (such as traversing the surface of Mars). The field is moving towards 

the creation of robots that are capable of working efficiently and effectively alongside humans. 

These so-called ñcobots,ò have proved difficult to make and account for roughly only 5 percent 

of total global sales (Hollinger, 2016). 

 

Robots cannot complete tasks they were not constructed specifically to undertake. In addition, 

robotics technology builds on other areas of narrow AI like computer vision, machine learning, 

and natural language processing. Robotics brings together both hardware and software, 

advancing the field of robotics requires improvements in both domains. Available market 

research suggests that investment is coming. One estimate placed the global robotics market at 

around $71 billion in 2015, growing to $135 billion by 2019 (Waters and Bradshaw, 2016). The 

size of the service robotics market alone could grow from around $9 billion in 2016, growing to 

$24 billion by 2024 (Zion Market Research, 2017). 

     

An index score of 10 would be a robot that can respond to and perform a wide-range of tasks for 

which it has not formally prepared or trained. A score of 10 may even represent a robot that can 

perform any general task as well as a human. This remains a distant goal. For instance, in 2016 

Amazon held a contest to design a robot capable of stocking shelves in its warehouse. A task that 

would be fairly simple with humans, the winning robot had an error rate of around 16 percent, 

and Amazon said they did not plan to make human workers redundant in spite of these results 

(Vincent, 2016). 
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Reasoning, Planning & Decision-making:  

 

AITASK Reasoning 2015 Index Score: 1 

 

This is initialized at 1 in 2015. Development along this index is a distal driver pushing narrow AI 

technology toward the general level. Along this index, as reasoning approaches a score of 5, we 

forecast low-level, basic general intelligent machines to begin to come into being. As the index 

moves towards 10, general AI is improving, becoming as intelligent and capable as the average 

human. A reasoning score of 10 corresponds to the advent of a generally intelligent machine on 

par with human capabilities in reasoning, planning, language, vision, and decision-making. At 

this point machine technology has a sense of purpose and understanding of the world around it. 

 

Preliminary Results and Discussion 

 
We begin by presenting the Current Path (or base case) results of the IFs AI representation and 

forecast. Figure 7 below shows the forecast of narrow AI technology along the six key 

technologies. The rate of development is calculated and estimated as a function of performance 

along task-specific competitions and evaluations, the estimated size of the market for each of 

these technologies and forecasted growth of that market, as well as (where available) estimates 

of academic publications in each of these domains. The Internet of Things reaches an index score 

of 9 first, around 2038. Computer vision also proceeds rapidly, reaching an index score of 

between 9 and 10 around 2040. Robotics and natural language processing are slower-moving, 

and do not reach a score of 9 or 10 until around 2050.  

 

 

 
Figure 7. Narrow AI Forecast from IFs v. 7.29 IP 2 
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Under this approach, the movement from narrow to general artificial intelligence is conceived of 

from a ñbottom-upò perspective. Along this line of thinking, the emergence of a generally 

intelligent machine must be developed from and build on existing narrow technologies. AGI 

researchers have expressed support for this approach (Harnad, 1990), and from our perspective 

this is conceivably the only way that AGI is likely to emerge. Progress along each of these 

technologies proceeds at differential rates, and general AI will not emerge until these 

technologies have reached advanced levels and become more integrated. Moreover, progression 

towards general AI is constrained by the movement of AITASK Reasoning, which is both the 

least developed and slowest moving of each of the narrow technologies. General intelligence is 

achieved when the reasoning index reaches a score of 5, which corresponds with a machine IQ 

score of between 55 and 60, or that of a human with very low intelligence. Figure 8 shows the 

Current Path forecast of AIMACHIQ. The Current Path suggests that a generally intelligent 

machine could be developed as early as 2040, though such a machine would have the 

intelligence equivalent to that of a ñlow-intelligenceò human. AIMACHIQ  suggests that a 

generally intelligent machine with average level human intelligence (generally considered an IQ 

score between 90 and 110) could more likely be achieved between 2046 and 2050.  

 

From there, AIMACHIQ is forecast to grow, in line with improvements in the capability of 

general artificial intelligence. AI researchers have suggested that AI superintelligence will come 

about from positive feedback loops brought on by the invention of AGI (Bostrom, 1998). 

AIMACHIQ approaches a machine IQ score of 144, the equivalent of a high-intelligence score 

on the human IQ index by between 2055 and 2057. AIMACHIQ begins to approach super-

human IQ (around 180, which only a handful of known humans have ever achieved) by 2090, 

suggesting that superintelligent AI could be achieved (at the earliest) near the end of the current 

century. 

 

 

 
Figure 8. AI Machine IQ Base Case Forecast from IFs v. 7.29 IP 2 
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We fully acknowledge the vast amount of uncertainty surrounding the development of artificial 

intelligence and the variability around a potential timeline. No comprehensive roadmap for 

general AI exists. The best available estimates of when we may see AGI come from expert 

surveys from the field. These provide important context for the IFs Current Path forecast.  

 

The results from a number of studies using the Delphi Technique3 on the future of AGI are 

depicted below in Table 8. The majority of respondents felt there is a 50 percent chance of AGI 

between 2040 and 2050, and a 90 percent chance of AGI on or after 2075. Notably, in one 

survey close to 2 percent of respondents felt that AGI would never be achieved. 

 

Table 8. Literature Survey on Timeline for General AI Development 

Study Details Results 

Kurzweil  (2005) In his book the Singularity noted 

futurist Ray Kurzweil (now 

Google Director of AI) laid out 

his forecast for the development 

of general AI 

General AI will be present around the year 2045  

Baum et al., 

(2011) 

Assessment of expert opinion 

from participants at the AG-09 

conference 

The consensus was that a large portion of the AI 

community believed AGI is possible around the middle 

of the current century. 

Bostrom & 

Sandberg, 

(2011) 

Surveyed 35 participants at a 

human level intelligence 

conference in 2011 

Median results: 

 

10% chance of AGI: 2028 

50% chance of AGI: 2050 

90% chance of AGI: 2150 

 

Barrat & 

Goertzel (2011) 

Surveyed participants at AG-11 

conference hosted by Google 

Results: 

 

42% of respondents: 2030 

25% of respondents: 2050 

20% of respondents: 2100 

10% of respondents after 2100 

2%: never 

 

Muller and 

Bostrom, (2014) 

Electronic survey to hundreds of 

AI experts and researchers  

Median results: 

 

10% chance of AGI: 2022 

50% chance of AGI: 2040 

90% chance of AGI: 2075 

 

 

 

In addition, Mueller & Bostrom (2014) also asked participants when they felt we were likely to 

see the transition from general intelligence to artificial superintelligence. The responses indicated 

a 10 percent likelihood that the transition could occur within 2 years of the development of AGI 

and a 75 percent likelihood within 30 years of AGI. The IFs forecast is generally in line with 

these expert expectations. 

                                                 
3A method of group decision-making and forecasting that involves successively gathering the opinions of experts to 

come to a consensus-style answer. 
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We also created several scenarios around the future AI using the parameters described in table 6: 

Accelerated AI, and Stalled AI. Under the Accelerated AI scenario, AI proceeds at roughly 

double its pace relative to the Current Path. In this scenario, general AI emerges around 2030, 

and superintelligent AI technology is forecast to emerge midway through the current century. 

Under the Stalled AI scenario, the reverse is true and AI development proceeds at half the pace 

of the Current Path. General AI technology is not forecast to emerge before approximately 2051, 

and superintelligent AI is not achieved within this century. Even by close to 2100, available AI 

technology measures IQ scores of around 90, on par with average human intelligence. These 

scenarios help give a sense of the flexibility of the forecast within IFs and how the AI index can 

be manipulated to better match expectations. 

 

The scenarios displayed below underscore two fundamental uncertainties around the future of AI 

with respect to this forecasting exercise: i) how ñhighò it can ultimately go (that is, what level 

can AI achieve), and ii) how fast it will get there. The parameters added to IFs allow users to 

control both elements. The scenarios in Figure 9 both accelerate the pace of AI and affect its end 

level in 2100. Under Accelerated AI, the index reaches a score of close to 350 by 2100, whereas 

Stalled AI only achieves an index score of around 100 by 2100.  

 

 

 
Figure 9. Scenarios around AI development affecting both rate of growth and end level in 2100 from IFs v. 7.29 IP 2 

 

For the purposes of comparison and also to provide readers with a sense of the customization 

built into the AI indices, Figure 10 displays the results of scenarios that affect the rate of growth 

of AI technologies, but do not alter its end level by 2100. Both scenarios simulate a 50 percent 

increase or decrease in the rate of AI development relative to the Current Path. In Accelerated AI 

(2), AI converges towards an advanced machine IQ score of 180 more rapidly than in the Current 

Path. In this scenario we expect to see general AI emerge between 2035 and 2038, and 
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superintelligent machines to come into being around mid-century. After 2050 AI technology 

growth slows as it converges towards a fixed level of superintelligence. In a similar pattern, 

Stalled AI (2) slows AIôs advance by 50 percent relative to the Current Path. In this scenario AI 

Machine IQ only begins to approach superintelligence by end of century (approaching an index 

score of 150), but does not approach the maximum level of capability by the end of the horizon. 

General AI alone doesnôt emerge until mid-2060.  

 

 

 
Figure 10. Scenarios around AI development affecting only the rate of growth or development to 2100 from IFs 7.29 IP v 4 

 

International Futures: Exploring the Impacts of Artificial 

Intelligence 
 

As we have expressed throughout this report, AI will have deep impacts on many areas of human 

development. The utility of this quantitative forecast of AI development will be significantly 

enhanced by connecting the AI representation to other areas of the IFs model that would allow us 

to explore its impact at multiple levels over both the medium and long-term. The fact that IFs is 

integrated across so many different human development systems leaves it uniquely placed among 

other modeling efforts to capture the deep and wide-ranging impact of AI. Connecting AI to 

other areas of the model would have to be done through a set of carefully calibrated elasticityôs 

that could be freely adjusted by users. We propose to capture AIôs impact by on three areas in 

particular: economic productivity, labor, and international trade through production localization. 
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 Economic Productivity 
 

A near universal consensus in the literature suggests AI will improve economic productivity, but 

analysis on the depth of impact varies widely. Productivity, an assessment of output based on a 

fixed number of inputs, is a benchmark for efficiency of production and technological progress 

(McGowan et al., 2015:21). Nobel Prize winning economist Paul Krugman pointed out that with 

respect to economic growth, ñproductivity isnôt everything, but in the long run it is almost 

everythingò (Krugman, 1994:11). Fortunately, AI is poised to enhance productivity. 

 

A 2016 report by Accenture, a consulting firm, laid out three avenues through which AI could 

enhance economic activity. The first is through intelligent automation, wherein AI is able to 

automate complex physical tasks, such as retrieving items in a warehouse. Increasingly 

intelligent AI machines are anticipated to be able to adapt across different tasks and industries. 

The second way AI will improve technology is by enhancing labor and capital, by freeing labor 

to act more creatively, imaginatively, and freely. The third way AI could enhance productivity is 

the result of diffusion, whereby innovation catalyzed by AI moves through diverse sectors of the 

economy. For instance, driverless cars will not only fundamentally change how our automobiles 

work, they could entirely restructure the auto insurance industry, reduce traffic congestion, 

accidents, and associated hospital bills, and stimulate demand for smart infrastructure. The extent 

of the productivity increase in different sectors will be more closely tied to how susceptible each 

industry is to AI technologies and/or automation, rather than factors like the level of investment 

or the level of development of the country in question. 

 

Most analysis of AI and productivity today focuses on estimating the benefits to productivity 

over the next decade or so. In 2015 Bank of America Merrill Lynch estimated that robots and AI 

technologies could bring add an estimated $2 trillion  to U.S. GDP in efficiency gains over the 

next ten years, driven by the adoption of autonomous cars and drones. By their estimation 

robotics alone could drive productivity gains of 30 percent in many industries (Ma et al., 2015). 

The latest report from Mckinsey Global Institute (2017) on labor and technology estimated that 

AI-driven automation could increase global productivity by 0.8 percent to 1.4 percent annually 

within the next few years. The same report by Accenture Consulting is even more optimistic, 

estimating that labor productivity be between 11 and 37 percent higher in a sample of OECD 

countries in 2035 as a result of AI (Table 9).  

 
Table 9. Forecasted Impacts of AI on Productivity in 2035 

Source: Accenture, 2016 

Country  Percentage increase in 

Labor Productivity in 2035 

compared to Base 

Sweden 37% 

Finland 36% 

United States 35% 

United Kingdom 25% 

Belgium 17% 

Spain 11% 
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Fewer attempts have been made to measure productivity and automation using historical data. 

One attempt by two researchers at Uppsala University and the London School of Economics 

used data from 1993 to 2007 in seventeen advanced economies. Across that period, the density 

of robots in manufacturing centers increased 150 percent, and both total factor productivity and 

wages increased. They find that robots increased GDP and labor productivity by 0.37 and 0.36 

percentage points respectively. Although there is less research on automation and productivity 

using historical data, the argument for productivity gains from AI builds on a substantial body of 

evidence of productivity gains in developed economies resulting from the ICT boom in the 1990s 

and early 2000s. Research has identified positive productivity gains both within industries 

(Stiroh, 2002) and across countries and regions (Bloom et al., 2012; OôMahony and Timmer, 

2009; Qiang, 2009). 

 

Nevertheless, with respect to productivity, AI may be facing some strong headwinds. According 

to figures published in August 2016, U.S. labor productivity levels declined for the third straight 

quarter last year (Azeez, 2016). This is symptomatic of broader trends in the U.S. economy: 

between 2000 and 2007 annual productivity grew at around 2.6 percentðbetween 2007 and 

2016, it grew only by one percent. In the 1990ôs ICT gains helped U.S. productivity grow by 2.2 

percent per annum (Lam, 2017). This slowdown has not been restricted to just the United States, 

nor is it necessarily specific to certain industries or sectors (Foda, 2016). Even by 2013, average 

productivity was 2 percent below levels seen prior to the 2008- 2009 financial crisis across the 

OECD (McGowan et al., 2015). Declining productivity among advanced economies is a 

troubling phenomenon concerning to policymakers. A number of explanations have been put 

forth, including: i) aging populations and structural economic inefficiencies (Gordon, 2012), ii) 

labor reallocation challenges (Haltiwagner, 2011), iii) increasingly bureaucratic and unwieldy 

firms (Hamel & Zanini, 2016), and iv) slowing technology diffusion among firms and industries 

(McGowan et al., 2015).  

 

A simpler explanation may simply be that technology has simply complicated calculations of 

GDP growth and productivity. Mainstream platforms from the Economist to the World 

Economic Forum have recently catalogued issues with GDP as an indicator of economic growth. 

Mathematically, GDP represents the sum of all consumption, government spending and 

investment (plus exports minus imports). Governments commonly use GDP to set fixed growth 

targets. It gives a general picture of the health of a countryôs economy. 

 

The attachment to GDP has led to measures like GDP per capita representing proxies for 

standard of living economic wellbeing. And yet, economists increasingly point out that GDP is a 

poor indicator of economic and social wellbeing (S. Thompson, 2016). It says little about 

inclusive growth, or how the gains from growth are distributed. It says nothing about 

environmental degradation that may result from growth. It doesnôt tell us whether growth is 

actually improving peopleôs lives. And yet, as the Financial Times points out: ñGDP may be 

anachronistic and misleading. It may fail entirely to capture the complex trade-offs between present 

and future, work and leisure, ógoodô growth and óbadô growth. Its great virtue, however, remains that it 

is a single, concrete number. For the time being, we may be stuck with itò (Pilling, 2014). 
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GDP is also problematic because it may not fully capture the benefits of the digital economy. GDP has 

not kept pace with changes in the way the economy works (Libert and Beck, 2016). GDP 

misrepresents important activities related to things like knowledge creation, product quality 

improvements, stay-at-home parenting, or the gig economy. The sharing economy (think Uber or 

AirBnb) may not be properly valued through existing measurements. By one estimate, the sharing 

economy may have been worth around $14 billion in 2014, and could grow to $335 billion by 2025 

(Yaraghi and Ravi, 2016). Misrepresenting or failing to capture such a rapidly growing industry 

would skew measurements of our true productivity. 

 

With this debate over GDP and productivity in mind, any discussion over the impact of AI on 

productivity should entertain the concept of ñconsumer surplus,ò that is the total value to the 

consumer for the use of an online good or service less any costs that consumers pay to access those 

services (Pélissié du Rausas et al., 2011). This has been advanced as a foundational concept in 

estimating the value of the digital economy. 

 

A 2011 report from Mckinsey Global put the value of the ñinternet economyò at around $8 trillion, 

accounting for more than 3 percent of global GDP among developed countries.4 If it were a sector, 

the internet would be more significant than agriculture or utilities (Figure 11).  Across the different 

countries explored in the report, the total consumer surplus ranged from $10 billion in Germany and 

France to near $64 billion in the United States. A separate but related piece of Mckinsey analysis 

(also 2011) looked at the economic value of internet search in five major economies (Brazil, France, 

India, Germany, and the United States). They estimated internet search was worth close to $870 

billion across the global economy. Of that, roughly 31 percent ($240 billion) is not captured in GDP 

statistics, but represents consumer surplus, or value accruing from benefits of convenience, lower 

prices, and ease of information access.  

 

Other studies have attempted to measure the impact of the internet on GDP and consumer surplus. 

One 2009 study completed by consultants with Harvard Business School estimated that 

approximately 2 percent of Americans were employed directly or indirectly by internet-related 

                                                 
4 Based on an analysis of 13 economies accounting for 70 percent of global GDP  

Figure 121. Internet Contribution to GDP 

Source: Manyika & Roxburgh, 2011 
Figure 122. Sector Contribution to GDP 

Source: Manyika & Roxburgh, 2011 
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activities (advertising, commerce, IT infrastructure, maintenance), generating close to $300 billion in 

wages. In addition to jobs, the internet adds an estimated $175 billion to the U.S. economy through 

retail, advertising, and payments to internet service providers. Moreover, between work and leisure, 

they estimated Americans spend close to 68 hours per month on the internet, which produces an 

estimated $680 billion in value (Quelch, 2009). A 2016 study from Georgetown University estimated 

that for every $1 spent using Uber, a U.S.-based ride-sharing service, $1.60 of consumer surplus was 

generated. They estimated that across the U.S., Uber helped generate $6.8 billion in consumer 

benefits (Cohen et al., 2016). 

 

Nevertheless, consumer surplus is notoriously difficult to measure. Measuring surplus requires 

knowing the demand for a product. But many digital services like Facebook and Google are free. 

Without a price, it is difficult to quantify demand. Moreover, users of digital services like Facebook 

derive different levels of surplus or satisfaction. The value we place on Facebook is dependent on our 

networks; if more of our friends are actively engaged with Facebook and social media, we will derive 

greater value. These kinds of implications raise questions about whether it is possible to derive a 

single demand curve for digital products. At the same time, the growth of the internet and the digital 

economy is undeniable, and many of its welfare-producing activities are not currently well captured 

in GDP measurements. New methods of capturing value-add in the digital age will produce a more 

accurate picture of productivity, particularly in the developed world, and allow researchers and 

policymakers to respond and adapt appropriately. 

 

Labor 
 

In the present day, nothing captures the attention of mainstream media and policymakers like the 

potential impact of artificial intelligence on labor, particularly through the computerization and 

automation of jobs. At the 2017 World Economic Forum in Davos, a panel of technology leaders 

and AI experts focused not on the potential for large profits and the business gains, but how to 

deal with those left behind in the digital age (Bradshaw, 2017). The populist backlash to the 

impacts of globalization that culminated in Brexit and the election of Donald Trump as President 

in the United States, coupled with the rise of populist parties in Europe shows that these concerns 

are well founded and can have real political implications. Adding fuel to the flames of populist 

sentiments are headline-grabbing analyses such as the 2013 report by from Oxford University 

that estimated close to 47 percent of jobs in the U.S. labor market were at risk of automation in 

the next 10 years (Frey & Osborne, 2013). Perhaps AI is leading us all into a jobless future. 

 

 In reality, it is difficult to quantify the effect of technology on labor, and even more difficult to 

predict the scope and breadth of future automation. For every headline predicting massive social 

dislocation from AI, there are corresponding analyses predicting that AI will unleash a new wave 

of jobs in new industries that will undoubtedly emerge from the AI revolution. The optimists 

argue that AI will take over jobs that are dull and dangerous, freeing up human labor for more 

creative and fulfilling tasks. This remains a widely debated and hotly contested issue. Let us look 

at some of the forecasted implications. 

 

The 2016 World Economic Forum produced a background report on the future of jobs. In the 

report, they surveyed 15 of the worldôs largest economies, comprising approximately 1.86 billion 

workers or 65 percent of the total global workforce. They concluded that artificial intelligence 

will lead to a net loss of 5.1 million jobs between 2015 and 2020 (7.2 million lost, 2.1 million 
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gained). Consequently, they estimate global unemployment could rise by 0.3 percent (Schwab & 

Samans, 2016). Mckinsey Global Institute estimated that activities accounting for close to $15 

trillion in wages globally could be automated by adapting current technologies, and that half of 

all work today could be automated away by 2055 (Manyika et al., 2017). While developed 

countries are likely to experience the effects of AI more rapidly because their economies depend 

more on technology, the effects are by no means restricted to the developed world. According to 

the World Bank, as many as 77 percent of jobs in China, 69% in India, and 85% in Ethiopia may 

be at risk of automation (World Bank Group, 2016). The jobs at risk for automation are highly 

repetitive tasks in structured environments, and data collection and analysis. Laborers in 

developing countries may also be sensing a trend: according to a survey of workers in 13 

countries, 80 percent of respondents in China and 62 percent in India felt AI would replace 

human labor in repetitive tasks. In Germany and the U.K. by contrast, only 39 and 45 percent of 

respondents felt the same way (Wong, 2016). The jobs at risk for automation are highly 

repetitive tasks in structured environments, and data collection and analysis. Sectors most at-risk 

he U.S. market include manufacturing, food service, retail, and some service sectors (Manyika et 

al, 2017).  

 

Estimating the impact of AI on labor also forces us to think about jobs as a series of tasks rather 

than as one monolithic entity. The same Mckinsey Global Institute Report actually estimates that 

only 5 percent of jobs could be fully automated, but that close to 60 percent of jobs in the U.S. 

market could be up to 30 percent automated at a task level within the next 20 years. This adds 

weight to the argument of optimists that AI will actually free human labor for more meaningful 

activity. A 2016 report from the OECD looked at the prospects of automation across OECD 

countries. Employing similar estimation techniques as the Oxford paper but controlling for 

within job tasking, they estimated the risk of computerization and found on average, 9 percent of 

jobs are at-risk (Arntz et al., 2016). 

 

There is more evidence that technology creates jobs by creating new products, changing 

preferences, and inducing competitiveness. In a 2016 report, analysts from Deloitte looked at the 

history of jobs and technology in the U.S. and U.K. between 1871 and today. They concluded 

that over the past 144 years, technology has created more jobs than it has cost. While technology 

has replaced some jobs, it has created new ones in knowledge and service sectors like medicine 

and law. Technology has reduced the cost of basic goods and raised incomes, prompting the 

creation of new jobs to meet changing demand (Stewart et al., 2015). 

 

Localization of Production and International Trade 
  

Another trend that could be significantly impacted by the rise of artificial intelligence deserves 

consideration: reshoring and the localization of production. Automated technologies are making 

it increasingly inexpensive for companies to produce goods at home, reducing the need for 

offshoring in search of cheap labor and competitive. In the U.S. there has been discussion around 

the idea of reshoring and anecdotal evidence suggests it is happening, yet critics contest the U.S. 

government does not maintain exhaustive data on reshoring and that the definition of reshoring 

itself remains contested, thus it is difficult to say whether it represents an industry-wide trend 

(Rivkin, 2014).  
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There is plenty of anecdotal evidence to hint at a trend. The term reshoring refers to the process 

of relocating production centers in typically developed countries. A (2012) MIT survey of 340 

participants from the manufacturing industry found that 33 percent were ñconsideringò bringing 

manufacturing back to U.S. shores, while a 2013 report in the Economist found that between 37 

and 48 percent of manufacturing firms with $1 billion or more in revenue that were surveyed 

were considering reshoring or had already begun the process. Individual examples of large 

companies moving production back to the U.S. or Europe have appeared in the media frequently 

in recent years (Oldenski, 2015). For instance: 

 

¶ In 2009 General Electric relocated production of water heaters from China to Kentucky 

¶ In 2010 Master Lock returned 100 jobs to Milwaukee, Wisconsin 

¶ In 2012 Caterpillar opened a new plant in Texas 

¶ In 2014 General Motors moved a production plant from Mexico to Tennessee 

¶ In 2015 Ford began announced it would begin producing engines at its Cleveland auto 

plant 

¶ In August 2016, Adidas opened its first manufacturing plant in Germany in over 30 years 

 

The anectodal evidence does not necessarily constitute a trend. For instance, the ñreshoring 

index,ò put together by consultancy group ATKearney reports that there were only about 60 

cases of reshoring in the U.S. in 2015, down from 300 cases in 2014. The index estimates there 

were 210 cases in 2013, 104 in 2012, 64 in 2011, and 16 in 2011, small figures when considering 

that U.S. multinational corporations employ as many as 36 million people worldwide (Oldenski, 

2015). These examples of reshoring also say nothing of any concurrent offshoring activity that 

may have happened during the same period. 

 

 

 
 

Figure 13. Published Cases of U.S. "Reshoring" 

Source: ATKearney, 2015 

 

 

Nevertheless, the fact remains that automation, coupled with low-cost energy and rising wages in 

the developing world, particularly China and India, has the potential to make companies rethink 

where they base their operations. There is also a strong pull for companies to base operations 

close to their primary markets to reduce shipping time and costs and improve their ability to 
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respond to local market needs and fluctuations. Moreover, in todayôs populist political climate, 

there are incentives to encourage companies to invest locally. In an AI-led world, itôs possible 

that the majority of production happens locally, reducing the necessity for the cross-border 

movement of goods and services. 

 

The energy sector is one area where this potential trend could manifest itself with significant 

implications for global trade. AI has the potential to disrupt current energy patterns by driving 

growth in renewable production that causes a reduction in the volume of international trade 

traditional energy products, particularly fossil fuels 

 

AI is already improving the efficacy of renewable energy production. A core challenge in 

harnessing renewable energies like wind and solar is their intermittency. Machine learning is 

helping to overcome this hurdle by crunching real-time data on weather conditions to produce 

accurate forecasts, allowing companies to better harness these sources (Bullis, 2014). In 

Germany, companies are using machine learning to crunch data and predict wind generation 

capacity in 48 hour increments which allows the national energy grid to respond to energy 

demand without relying on traditional energy sources to cover shortfalls (A. Thompson, 2016). 

 

AI is also poised to boost renewable generation by significantly enhancing demand-side 

efficiency. Machine learning, coupled with smart meters and smart applications, can help large 

grid systems identify consumption patterns and adjust energy provision and storage accordingly. 

AI technology is being applied to mine data that allows grid systems to come up with suitable 

and appropriate risk/reward mechanisms that both incentivize their customers to participate in 

smart energy and obtain measurable benefits (Robu, 2017). We can already see some of these 

patterns beginning to emerge. For instance, 2016 was the cleanest year on record for the U.K., 

where coal-fired energy production fell to under 10 percent of total production, down from 40 

percent in 2012. Wind power generation alone was higher than coal, at 10.2 percent (Wilson & 

Staffell, 2017). On a Sunday in May 2016, close to 100 percent of Germanyôs power demand 

was met using only renewable sources, primarily wind and solar. For a short 15 minute window 

during that day, power prices in Germany actually went negative (Shankelman, 2016). 

 

The growth of renewable energy capable of being domestically sourced and harnessed has 

important implications for global trade. Crude oil and its derivatives remains the most valuable 

traded commodity in the world. According to the UN Conference on Trade and Development 

(UNCTAD), trade in oil, gas, and petroleum products were estimated at between $1 and $2 

trillion in 2014 and 2015, among the largest of the 25 categories of goods and services tracked by 

the organization. British Petroleum (BP) estimated that in 2015 close to 1.02 billion tons of crude 

oil were exported in 2015 and 1.9 billion tons were imported (British Petroleum, 2016). The 

global trade in energy products remains significant today, but renewable generation could slow 

that trade. The IFs Current Path Forecast estimates that by 2050 close to 40 percent of the 

worldôs energy production will come from renewable sources, up from around 6 percent today.  
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Conclusion 
 

This report has detailed the conceptual development of AI and explained the construction of an 

AI representation in IFs. It has also laid out the potential for modeling the impact of AI within 

IFs with a particular focus on economic productivity, labor, and international trade and 

production localization. We will not try to summarize our findings here but instead encourage 

the reader to revisit the executive summary. We conclude this report by reminding readers of the 

benefits that quantitative modeling can bring to the understanding of AI its disparate impacts. 

We have been forthcoming about the level of uncertainty surrounding this forecasting exercise 

and have designed the AI representation to provide maximum user flexibility and freedom. 

Artificial Intelligence is rapidly unfolding and expected to have broad social and global impact. 

To allow us to better unpack AIôs development requires connecting the AI to other areas of the 

IFs model. IFs remains uniquely placed to pursue this endeavor and we fully believe further 

exploration and forecasting of this issue will be beneficial to the research community and 

broader public alike. 
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